Algebra: Proof and Number theory

Direct and Indirect Proof
Learning the language of proof

o Know what is meant by an implication

o Write the negation of a statement

o Given an implication, state the inverse, the converse and the contrapositive
o Know that a statement and its contrapositive are logically equivalent

A statement is a sentence that is true or false but not both. For example:
3 +5= 9 (false!).

A statement is negated by putting ‘not” after the verb:
3 + 5 # 9 (true).

A (universal) statement can be disproved by providing one counter example.
Example x2 + 1is odd Vx € R

Let x =3, x2+ 1 = 10 which is even. The statement is disproved.

Proving a statement is not quite so easy!

Implications
Consider Pythagoras’ Theorem which is an ‘if... then’ implication:

If triangle ABC is right-angled at C then ¢? = a? + b2. Or in symbols:

ACB =90° = ¢? = a? + b?
The inverse negates both statements: 7 8 +£90° = c* =+ at+ b>

The converse reverses the implication: ¢~ = % +b% = ACB = 90°

.. .. . A
The contrapositive does both i.e. it is the inverse of the converse: ¢ Fat+b = Ac8 + 10’

Truth Tables
A B Not Not if Athen B If not A I¥FB then A if not B then
A B (implication) | then not B | (converse) not A
(inverse) (contrapositive)

T, T F | F T T T T

T PR T E T T F

F T+ |F T F F T

vF F T T T T T T

The truth table for the implication and for the contrapositive are identical and thus they are
logically equivalent. If one is proved the other is automatically proven as well. The truth table
for the inverse and converse are different from that for the implication so these require further
proof,
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Learning to construct some direct proofs

o Prove sums of arithmetic or geometric series
o Prove simple statements involving natural numbers

Examples
1. Prove that the sum of the first # natural numbers is %n(n + 1).
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Learning indirect proof

o Prove a conjecture by contradiction
o Prove a conjecture by proving the contrapositive

Examples
1. Prove that V2 is irrational.
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2. Prove that there are infinitely many primes.
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3. Prove, by contrapositive, that if n*> + 1 is even then » is odd.
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