	Solving trig equations with double angles		
1	Solve the equation $\cos 2x + 5\cos x - 2 = 0$	for $0 \le x \le 360^{\circ}$.	5
2	Solve the equation $sin2x - cosx = 0$	for $0 \le x \le 180^{\circ}$.	4
3	Solve the equation $3\cos 2x + \cos x = -1$	for $0 \le x \le 360^{\circ}$.	5
4	Solve the equation $5\sin x - 4 = 2\cos 2x$	for $0 \le x \le 2\pi$.	5
5	Solve the equation $\cos 2x + 2\sin x = \sin^2 x$	for $0 \le x \le 360^{\circ}$.	5
6	Solve the equation sinx - 2cos2x = 1	for $0 \le x \le 2\pi$.	5

	Double Angle Equations – Answers		
1	Replace cos 2x with 2cos ² x – 1	<mark>2cos²x – 1</mark> + 5cosx – 2 = 0	
	Simplify and equate to zero	$2\cos^2 x + 5\cos x - 3 = 0$	
	Factorise	$(2\cos x - 1)(\cos x + 3) = 0$	
	Solve for each factor	$(2\cos x - 1) = 0$, $\cos x = \frac{1}{2}$, $x = 60^{\circ}$ and 300°	
		$(\cos x + 3) = 0$, $\cos x = -3$, no solutions	
2	Replace sin 2x with 2sinxcosx	<mark>2sinxcosx</mark> – cosx = 0	
	Factorise	$\cos(2\sin x - 1) = 0$	
	Solve for each factor	cosx = 0, x = 0° and 360°	
		$(2\sin x - 1) = 0 = 0$, $\sin x = 1/2$, $x = 30^{\circ}$ and 150°	
3	Replace cos 2x with 2cos ² x – 1	3(<mark>2cos²x – 1)</mark> + cosx = -1	
	Simplify and equate to zero	$6\cos^2 x + \cos x - 2 = 0$	
	Factorise	$(2\cos x - 1)(3\cos x + 2) = 0$	
	Solve for each factor	$(2\cos x - 1) = 0$, $\cos x = \frac{1}{2}$, $x = 60^{\circ}$ and 300°	
		$(3\cos x + 2) = 0$, $\cos x = -2/3$, $x = 138^{\circ}$ and 228°	
4	Replace cos 2x with 1 – 2sin ² x	5sinx – 4 = 2(<mark>1 – 2sin²x</mark>)	
	Simplify and equate to zero	5sinx – 4 = 2 - 4sin ² x	
		$4\sin^2 x + 5\sin x - 6 = 0$	
	Factorise	(4sinx - 3)(sinx + 2) = 0	
	Solve for each factor	(4sinx - 3) = 0, sinx = 3/4, x = 0.848, 2.29	
		(sinx + 2) = 0, $sinx = -2$, no solutions	
	Make sure that your final answers are i	nswers are in radians	
5	Replace cos 2x with $1 - 2\sin^2 x$	<mark>1 – 2sin²x</mark> + 2sinx = sin²x	
	Simplify and equate to zero	$3\sin^2 x - 2\sin x - 1 = 0$	
	Factorise	$(3\sin x + 1)(\sin x - 1) = 0$	
	Solve for each factor	(3sinx + 1)= 0, sinx = -1/3 x = 199.5° and 340.5°	
		$(\sin x - 1) = 0, \sin x = 1, x = 90^{\circ}$	
6	Replace cos 2x with $1 - 2\sin^2 x$	$\sin x - 2(\frac{1 - 2\sin^2 x}{2}) = 1$	
	Simplify and equate to zero	$4\sin^2 x + \sin x - 3 = 0$	
	Factorise	(4sinx - 3)(sinx + 1) = 0	
	Solve for each factor	$(4\sin x - 3) = 0$, $\sin x = 3/4$, $x = 0.848$, 2.29	
		$(\sin x + 1) = 0$, $\sin x = -1$, $x = \frac{3\pi}{2}$	
	Make sure that your final answers are in radians		