	Wave Function	
1	The expression $3\sin x + 5\cos x$ can be written in the form $R\sin(x + a)^\circ$ where $R > 0$ and $0 \le a \le 360^\circ$. Calculate the values of R and a	4
2	$y = 12\cos x - 5\sin x \cosh x $	
	(a) Calculate the values of <i>k</i> and <i>a</i>	
	(b) Hence state the minimum value $y = 12\cos x + 5\sin x$ and determine the value of x for which this minimum occurs in the interval and $0 \le x \le 360^{\circ}$	3
3	(a) Express sinx - 3cosx in the form $k \sin(x - a)$, where $k > 0$ and $0 \le a \le 2\pi$.	4
	(b) Find the maximum value of $y = 5 + \sin x - 3\cos x$ and state a value of x for which this maximum occurs	3
4	(c) Express sinx - $\sqrt{3}$ cosx in the form $k \sin(x - a)^\circ$ where $k > 0$ and $0 \le a \le 360^\circ$.	4
	(d) Hence sketch the graph of $y = sinx - \sqrt{3}cosx$	3
5	(a) Express $5\sin x + 2\cos x$ in the form $k\cos(x-a)$ where $k > 0$ and $0 \le x \le 360^{\circ}$	4
	(b) Hence or otherwise solve $5\sin x + 2\cos x = 3$ in the interval $0 \le x \le 360^{\circ}$	3

	Wave Function – Answers		
1	Expand the addition formula Rsin(x + a)	Rsinx cosa + Rcosx sina	
	Compare with the original function	3 <mark>sinx</mark> + 5 <mark>cosx</mark>	
	State Rsina and Rcosa	Rcosa = 3, Rsina = 5	
	Find a value for R and a and state conclusion	R = √34, a = 59°	
		3sinx + 5cosx = √34 sin(x + 59)°	
2	Expand the addition formula kcos(x - a)	kcosx cosa + ksinx sina	
(a)	Compare with the original function	12 <mark>cosx</mark> + 5 <mark>sinx</mark>	
	State ksina and kcosa	kcosa = 12, ksina = 5	
	Find a value for k and a and state conclusion	<i>k</i> = 13, a = 22.6°	
		12cosx – 5sinx = 13 cos(x - 22.6)°	
(b)	minimum value of y = cosx is -1 when x = 180°		
	minimum value of $y = 13 \cos(x - 22.6)^\circ$ is now -13 when $x = 180^\circ + 22.6^\circ \rightarrow 202.6^\circ$		

