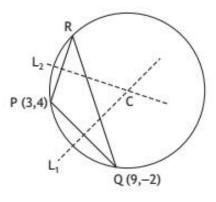

Υ	Q	Р	CIRCLES	
15	11	1		
			T(-2, -5) lies on the circumference of the circle with equation	
			$(x+8)^2 + (y+2)^2 = 45.$	
			(a) Find the equation of the tangent to the circle passing through T.	4
			(b) This tangent is also a tangent to a parabola with equation $y = -2x^2 + px + 1 - p$, where $p > 3$.	
			Determine the value of p .	6
15	14	1	The circle with equation $x^2 + y^2 - 12x - 10y + k = 0$ meets the coordinate axes at exactly three points.	
			What is the value of k?	2
15	5	2	Circle C ₁ has equation $x^2 + y^2 + 6x + 10y + 9 = 0$.	
			The centre of circle C_2 is $(9, 11)$.	
			Circles C ₁ and C ₂ touch externally.	
			c_2	
			(•)	
			c_l	
			(-)	
			(a) Determine the radius of C ₂ .	4
			A third circle, C ₃ , is drawn such that:	
			 both C₁ and C₂ touch C₃ internally the centres of C₁, C₂ and C₃ are collinear. 	
			(b) Determine the equation of C ₃ .	4

16	4	1	A and B are the points (-7, 3) and (1, 5). AB is a diameter of a circle.	
			Find the equation of this circle.	3
16	8	1	Show that the line with equation $y = 3x - 5$ is a tangent to the circle with equation $x^2 + y^2 + 2x - 4y - 5 = 0$ and find the coordinates of the point of contact.	5
16	4	2	Circles C ₁ and C ₂ have equations $(x+5)^2 + (y-6)^2 = 9$ and $x^2 + y^2 - 6x - 16 = 0$ respectively.	_
			(a) Write down the centres and radii of C₁ and C₂.(b) Show that C₁ and C₂ do not intersect.	3
17	2	1	The point P (-2, 1) lies on the circle $x^2 + y^2 - 8x - 6y - 15 = 0$. Find the equation of the tangent to the circle at P.	4
17	3	2	The line $y = 3x$ intersects the circle with equation $(x-2)^2 + (y-1)^2 = 25$.	
			Find the coordinates of the points of intersection.	5


17	10	2	(a) Show that the points $A(-7, -2)$, $B(2, 1)$ and $C(17, 6)$ are collinear.	3
			Three circles with centres A, B and C are drawn inside a circle with centre D as shown.	
			The circles with centres A, B and C have radii $r_{\rm A}$, $r_{\rm B}$ and $r_{\rm C}$ respectively. • $r_{\rm A} = \sqrt{10}$ • $r_{\rm B} = 2r_{\rm A}$ • $r_{\rm C} = r_{\rm A} + r_{\rm B}$ (b) Determine the equation of the circle with centre D.	4
18	4	1	The point K (8, -5) lies on the circle with equation $x^2 + y^2 - 12x - 6y - 23 = 0$.	
			$x^2 + y^2 - 12x - 6y - 23 = 0$	
			K(8, -5)	
			Find the equation of the tangent to the circle at K.	4

(b) Calculate the coordinates of C, the point of intersection of L_1 and L_2 .

2

C is the centre of the circle which passes through the vertices of triangle PQR.

(c) Determine the equation of this circle.

2

18	12	2		
			Circle C ₁ has equation $(x-13)^2 + (y+4)^2 = 100$.	
			Circle C ₂ has equation $x^2 + y^2 + 14x - 22y + c = 0$.	
			C_2 P C_1	
			(a) (i) Write down the coordinates of the centre of C ₁ .	1
			(ii) The centre of C ₁ lies on the circumference of C ₂ .	
			Show that $c = -455$.	1
			The line joining the centres of the circles intersects C_1 at P .	
			(b) (i) Determine the ratio in which P divides the line joining the centres of the circles.	2
			(ii) Hence, or otherwise, determine the coordinates of P.	2
			P is the centre of a third circle, C ₃ .	
			C ₂ touches C ₃ internally.	
			(c) Determine the equation of C ₃ .	1
19	3	1	Circle C ₁ has equation $x^2 + y^2 - 6x - 2y - 26 = 0$.	
			Circle C ₂ has centre (4,–2).	
			The radius of C ₂ is equal to the radius of C ₁ .	
			Find the equation of circle C ₂ .	2
19	16	1		
			The point P has coordinates $(4,k)$.	
			C is the centre of the circle with equation $(x-1)^2 + (y+2)^2 = 25$.	
			(a) Show that the distance between the points P and C is given by $\sqrt{k^2 + 4k + 13}$.	2
			(b) Hence, or otherwise, find the range of values of k such that P lies outside the	
			circle.	4

19	15	2	A circle has centre C(8,12).	
			The point P(5,13) lies on the circle as shown.	
			P(5,13) •C(8,12)	
			(a) Find the equation of the tangent at P.	3
			The tangent from P meets the y -axis at the point T.	
			(b) (i) State the coordinates of T.	1
			(ii) Find the equation of the circle that passes through the points C, P and T.	3
22	14	1	C_1 is the circle with equation $(x-7)^2 + (y+5)^2 = 100$.	
			(a) (i) State the centre and radius of C ₁ .	2
			(ii) Hence, or otherwise, show that the point $P(-2,7)$ lies outside C_1 .	2
			C_2 is a circle with centre P and radius r .	
			(b) Determine the value(s) of r for which circles C ₁ and C ₂ have exactly one point of intersection.	2

2 22 The line y = 3x 7 intersects the circle $x^2 + y^2 - 4x - 6y - 7 = 0$ at the points P and Q. (a) Find the coordinates of P and Q. 5 PQ is a tangent to a second, smaller circle. This circle is concentric with the first. (b) Determine the equation of the smaller circle.