| Υ | Q | Р | FUNCTIONS | | |----|----|---|--|---| | 15 | 5 | 1 | A function g is defined on \mathbb{R} , the set of real numbers, by $g(x) = 6 - 2x$. | | | | | | | 2 | | | | | (a) Determine an expression for $g^{-1}(x)$. | 2 | | | | | (b) Write down an expression for $g(g^{-1}(x))$. | 1 | | 15 | 13 | 1 | The function (() = 2Y + 2 is defined on The the eat of seal surplus | | | | | | The function $f(x) = 2^x + 3$ is defined on \mathbb{R} , the set of real numbers. | | | | | | The graph with equation $y = f(x)$ passes through the point $P(1, b)$ and cuts the y-axis at Q as shown in the diagram. | | | | | | $f(x) = 2^{x} + 3$ O $P(1, b)$ | | | | | | (a) What is the value of b? | 1 | | | | | (b) (i) Copy the above diagram.On the same diagram, sketch the graph with equation y = f⁻¹(x). | 1 | | | | | (ii) Write down the coordinates of the images of P and Q. | 3 | | | | | | | | | | | (c) R (3,11) also lies on the graph with equation $y = f(x)$.
Find the coordinates of the image of R on the graph with equation | | | | | | y = 4 - f(x+1). | 2 | | | | | | | | 15 | 2 | 2 | | | | 12 | | _ | Functions f and g are defined on suitable domains by | | | | | | f(x) = 10 + x and $g(x) = (1 + x)(3 - x) + 2$. | | | | | | (a) Find an expression for $f(g(x))$. | 2 | | | | | (b) Express $f(g(x))$ in the form $p(x+q)^2 + r$. | 3 | | | | | (c) Another function h is given by $h(x) = \frac{1}{f(g(x))}$. | | | | | | What values of x cannot be in the domain of h ? | 2 | | | | | | | | 16 | 6 | 1 | | | |----|----|---|--|---| | | | | Functions f and g are defined on $\mathbb R$, the set of real numbers. | | | | | | The inverse functions f^{-1} and g^{-1} both exist. | | | | | | (a) Given $f(x) = 3x + 5$, find $f^{-1}(x)$. | 3 | | | | | (b) If $g(2) = 7$, write down the value of $g^{-1}(7)$. | 1 | | 16 | 12 | 1 | The functions f and g are defined on $\mathbb R$, the set of real numbers by | | | | | | $f(x) = 2x^2 - 4x + 5$ and $g(x) = 3 - x$. | | | | | | | | | | | | (a) Given $h(x) = f(g(x))$, show that $h(x) = 2x^2 - 8x + 11$. | 2 | | | | | (b) Express $h(x)$ in the form $p(x+q)^2 + r$. | 3 | | 17 | 1 | 1 | Functions f and g are defined on suitable domains by $f(x) = 5x$ and $g(x) = 2\cos x$. | | | | | | (a) Evaluate $f(g(0))$. | 1 | | | | | | 2 | | | | | (b) Find an expression for $g(f(x))$. | 2 | | 17 | 6 | 1 | A function, h , is defined by $h(x) = x^3 + 7$, where $x \in \mathbb{R}$. | | | | | | Determine an expression for $h^{-1}(x)$. | 3 | | 17 | 15 | 1 | A quadratic function, f , is defined on $\mathbb R$, the set of real numbers. | | | | | | Diagram 1 shows part of the graph with equation $y = f(x)$.
The turning point is (2, 3). | | | | | | Diagram 2 shows part of the graph with equation $y = h(x)$. | | | | | | The turning point is (7, 6). | | | | | | y = f(x) $y = h(x)$ $y = h(x)$ | | | | | | Diagram 1 Diagram 2 | | | | | | | | | | | | (a) Given that $h(x) = f(x+a)+b$. | | | | | | Write down the values of a and b . | 2 | | | | | | | | 18 | 2 | 1 | A function $g(x)$ is defined on $\mathbb R$, the set of real numbers, by | | |----|----|---|--|---| | | | | $g(x) = \frac{1}{5}x - 4.$ | | | | | | Find the inverse function, $g^{-1}(x)$. | 3 | | 18 | 6 | 2 | Functions, f and g , are given by $f(x) = 3 + \cos x$ and $g(x) = 2x$, $x \in \mathbb{R}$. | | | | | | (a) Find expressions for | | | | | | (i) $f(g(x))$ and | 2 | | | | | (ii) $g(f(x))$. | 1 | | 19 | 10 | 1 | The diagram shows the graphs with equations $y = f(x)$ and $y = kf(x) + a$. | | | | | | y = f(x) $(0,3)$ $(2,5)$ x $y = kf(x) + a$ | | | | | | (a) State the value of a . | 1 | | | | | (b) Find the value of k . | 1 | | 19 | 12 | 1 | Functions f and g are defined by | | | | | | • $f(x) = \frac{1}{\sqrt{x}}$, where $x > 0$ | | | | | | • $g(x) = 5 - x$, where $x \in \mathbb{R}$. | | | | | | (a) Determine an expression for $f(g(x))$. | 2 | | | | | (b) State the range of values of x for which $f(g(x))$ is undefined. | 1 | | 19 | 5 | 2 | The diagram below shows the graph of a cubic function $y = g(x)$, with stationary points at $x = -2$ and $x = 4$. | | |----|---|---|--|---| | | | | On the diagram in your answer booklet, sketch the graph of $y = g'(x)$. | 2 | | 19 | 8 | 2 | A function, f , is given by $f(x) = \sqrt[3]{x} + 8$.
The domain of f is $1 \le x \le 1000$, $x \in \mathbb{R}$.
The inverse function, f^{-1} , exists.
(a) Find $f^{-1}(x)$.
(b) State the domain of f^{-1} . | 3 | | 22 | 3 | 1 | A function, h , is defined by $h(x) = 4 + \frac{1}{3}x$, where $x \in \mathbb{R}$.
Find the inverse function, $h^{-1}(x)$. | 3 |