Υ	Q	Р	INTEGRATION	
15	12	1		
			The diagram shows part of the graph of $y = a \cos bx$.	
			The shaded area is $\frac{1}{2}$ unit ² .	
			$ \begin{array}{c c} \hline 0 & \frac{\pi}{4} & \frac{3\pi}{4} \\ \end{array} $	
			What is the value of $\int_0^{\frac{3\pi}{4}} (a\cos bx) dx$?	2
15	15	1	The rate of change of the temperature, T °C of a mug of coffee is given by	
			$\frac{dT}{dt} = \frac{1}{25}t - k , \ 0 \le t \le 50$	
			 t is the elapsed time, in minutes, after the coffee is poured into the mug k is a constant 	
			• initially, the temperature of the coffee is $100^{\circ}\mathrm{C}$	
			• 10 minutes later the temperature has fallen to 82°C .	
			Express T in terms of t .	6
15	4	2	A wall plaque is to be made to commemorate the 150th anniversary of the publication of "Alice's Adventures in Wonderland". The edges of the wall plaque can be modelled by parts of the graphs of four quadratic functions as shown in the sketch.	
			$y = f(x)$ $y = f(x)$ $y = h(x)$ $h(x) = \frac{3}{8}x^2 - \frac{3}{2}x + 5$ $h(x) = \frac{3}{8}x^2 - \frac{9}{4}x + 3$ $h(x) = \frac{3}{8}x^2 - \frac{3}{4}x$ (a) Find the <i>x</i> -coordinate of the point of intersection of the graphs with equations $y = f(x)$ and $y = g(x)$. The graphs of the functions $f(x)$ and $h(x)$ intersect on the <i>y</i> -axis.	2
			The plaque has a vertical line of symmetry.	
			(b) Calculate the area of the wall plaque.	7

15	7	2	(a) Find $\int (3\cos 2x + 1) dx$.	2
			(b) Show that $3\cos 2x + 1 = 4\cos^2 x - 2\sin^2 x$.	2
			(c) Hence, or otherwise, find $\int (\sin^2 x - 2\cos^2 x) dx$.	2
16	5	1	Find $\int 8\cos(4x+1)dx$.	2
16	3	2	 (a) (i) Show that (x+1) is a factor of 2x³ - 9x² + 3x + 14. (ii) Hence solve the equation 2x³ - 9x² + 3x + 14 = 0. (b) The diagram below shows the graph with equation y = 2x³ - 9x² + 3x + 14. The curve cuts the x-axis at A, B and C. y y = 2x³ - 9x² + 3x + 14 (i) Write down the coordinates of the points A and B. (ii) Hence calculate the shaded area in the diagram. 	2 3
16	0	2		
16	9	2	For a function f , defined on a suitable domain, it is known that: $f'(x) = \frac{2x+1}{\sqrt{x}}$ • $f(9) = 40$	
			Express $f(x)$ in terms of x .	4

17	10	1	Two curves with equations $y = x^3 - 4x^2 + 3x + 1$ and $y = x^2 - 3x + 1$ intersect as shown in the diagram.	
			$y = x^3 - 4x^2 + 3x + 1$ $y = x^2 - 3x + 1$	
			(a) Calculate the shaded area. 5	
			The line passing through the points of intersection of the curves has equation $y = 1 - x$.	
17	13	1	$y = x^3 - 4x^2 + 3x + 1$ $y = x^2 - 3x + 1$ $y = 1 - x$ (b) Determine the fraction of the shaded area which lies below the line $y = 1 - x$.	
17	13	•	Find $\int \frac{1}{(5-4x)^{\frac{1}{2}}} dx$, $x < \frac{5}{4}$.	
18	10	1	Given that • $\frac{dy}{dx} = 6x^2 - 3x + 4$, and • $y = 14$ when $x = 2$, express y in terms of x .	
18	14	1	Evaluate $\int_{-4}^{9} \frac{1}{\sqrt[3]{(2x+9)^2}} dx$.	

18	1	2		
	_	_	The diagram shows the curve with equation $y = 3 + 2x - x^2$.	
			<i>y</i> •	
			$-1/0$ $\sqrt{3}$ x	
			$y = 3 + 2x - x^2$	
			Calculate the shaded area.	4
19	8	1	The graphs of $y = x^2 + 2x + 3$ and $y = 2x^2 + x + 1$ are shown below.	
			The graphs of $y = x + 2x + 3$ and $y = 2x + x + 1$ are shown below.	
			\ \ `	
			$\setminus \setminus f$	
			\ \	
			\ \	
			$y = x^2 + 2x + 3$	
			$y = 2x^2 + x + 1$	
			0 x	
			The graphs intersect at the points where $x = -1$ and $x = 2$.	
			(a) Express the shaded area, enclosed between the curves, as an integral.	1
			(b) Evaluate the shaded area.	3
19	11	1	$(\frac{\pi}{9}, (\pi))$	
			Evaluate $\int_0^{\frac{\pi}{9}} \cos\left(3x - \frac{\pi}{6}\right) dx.$	4

19	17	1	() 2	•
			(a) Express $(\sin x - \cos x)^2$ in the form $p + q \sin rx$ where p , q and r are integers.	3
			(b) Hence, find $\int (\sin x - \cos x)^2 dx$.	2
19	2	2	Find $\int \left(6\sqrt{x}-4x^{-3}+5\right)dx$.	4
19	13	2	For a function, f , defined on the set of real numbers, \mathbb{R} , it is known that • the rate of change of f with respect to x is given by $3x^2 - 16x + 11$ • the graph with equation $y = f(x)$ crosses the x -axis at (7,0). Express $f(x)$ in terms of x .	5
22	6	1	Evaluate $\int_{-5}^{2} (10-3x)^{-\frac{1}{2}} dx$.	4
22	4	2	The graph shown has equation $y = x^3 - 5x^2 + 2x + 8$. The total shaded area is bounded by the curve and the x -axis. $y = x^3 - 5x^2 + 2x + 8$ (a) Calculate the shaded area above the x -axis.	4
			(a) Calculate the shaded area above the x-axis.(b) Hence calculate the total shaded area.	3
22	6	2	A curve with equation $y = f(x)$ is such that $\frac{dy}{dx} = 1 + \frac{3}{x^2}$, where $x > 0$. The curve passes through the point (3,6).	MARKS
			Express y in terms of x .	5