Υ	Q	Р	TRIG	
15	4	1		
			The diagram shows part of the graph of the function $y = p\cos qx + r$. Write down the values of p , q and r .	3
15	10	1	Character and a 3 of the second of	
			Given that $\tan 2x = \frac{3}{4}$, $0 < x < \frac{\pi}{4}$, find the exact value of	
			(a) $\cos 2x$	1
			(b) cos x.	2
15	9	2	The blades of a wind turbine are turning at a steady rate. The height, h metres, of the tip of one of the blades above the ground at time, t seconds, is given by the formula $h = 36\sin(1\cdot 5t) - 15\cos(1\cdot 5t) + 65.$ Express $36\sin(1\cdot 5t) - 15\cos(1\cdot 5t)$ in the form $k\sin(1\cdot 5t - a), \text{ where } k > 0 \text{ and } 0 < a < \frac{\pi}{2},$ and hence find the two values of t for which the tip of this blade is at a height of 100 metres above the ground during the first turn.	8
16	13	1	Triangle ABD is right-angled at B with angles BAC = p and BAD = q and lengths as shown in the diagram below.	5

16	8	2	a) Express $5\cos x - 2\sin x$ in the form $k\cos(x+a)$,	
			where $k > 0$ and $0 < a < 2\pi$.	4
			 b) The diagram shows a sketch of part of the graph of y = 10 + 5cos x - 2sin x and the line with equation y = 12. The line cuts the curve at the points P and Q. 	
			$y = 10 + 5\cos x - 2\sin x$ $y = 12$	
			O x	
			Find the x-coordinates of P and Q.	4
16	11	2		
			(a) Show that $\sin 2x \tan x = 1 - \cos 2x$, where $\frac{\pi}{2} < x < \frac{3\pi}{2}$.	4
17	14	1		
			(a) Express $\sqrt{3} \sin x^{\circ} - \cos x^{\circ}$ in the form $k \sin (x-a)^{\circ}$, where $k > 0$ and $0 < a < 360$.	4
			(b) Hence, or otherwise, sketch the graph with equation $y = \sqrt{3} \sin x^{\circ} - \cos x^{\circ}$, $0 \le x \le 360$.	3
17	6	2	Solve $5 \sin x - 4 = 2 \cos 2x$ for $0 \le x < 2\pi$.	5
18	3	1	Given $h(x) = 3\cos 2x$, find the value of $h'\left(\frac{\pi}{6}\right)$.	3
18	6	2	Functions, f and g , are given by $f(x) = 3 + \cos x$ and $g(x) = 2x$, $x \in \mathbb{R}$.	
			(a) Find expressions for	
			(i) $f(g(x))$ and	2
			(ii) $g(f(x))$.	1
			(b) Determine the value(s) of x for which $f(g(x)) = g(f(x))$ where $0 \le x < 2\pi$.	6

18	8	2	(a) Express $2\cos x^{\circ} - \sin x^{\circ}$ in the form $k\cos(x-a)^{\circ}$, $k > 0$, $0 < a < 360$.	4
			(b) Hence, or otherwise, find	
			(i) the minimum value of $6\cos x^{\circ} - 3\sin x^{\circ}$ and	1
			(ii) the value of x for which it occurs where $0 \le x < 360$.	2
	10			
19	13	1	Triangles ABC and ADE are both right angled.	
			Angles p and q are as shown in the diagram.	
			A $\frac{\sqrt{5}}{q}$ $\frac{1}{C}$ $\frac{1}{E}$ (a) Determine the value of (i) $\cos p$ (ii) $\cos q$.	1 1
			(b) Hence determine the value of $\sin(p+q)$.	3
19	15	1	(a) Solve the equation $\sin 2x^2 + 6\cos x^2 = 0$ for $0 < x < 360$	4
			(a) Solve the equation $\sin 2x^{\circ} + 6\cos x^{\circ} = 0$ for $0 \le x < 360$.	4
			(b) Hence solve $\sin 4x^{\circ} + 6\cos 2x^{\circ} = 0$ for $0 \le x < 360$.	1
19	6	2	(a) Express $2 \cos x^{\circ} - 3 \sin x^{\circ}$ in the form $k \cos(x+a)^{\circ}$ where $k > 0$ and $0 \le a < 360$.	4
			(b) Hence solve $2 \cos x^{\circ} - 3 \sin x^{\circ} = 3$ for $0 \le x < 360$.	3

22	7	1	Triangles ABC and ADE are both right angled. Angle BAC = q and angle DAE = r as shown in the diagram.	
			(a) Determine the value of: (i) $\sin r$ (ii) $\sin q$. (b) Hence determine the value of $\sin (q-r)$.	1 1 3
22	9	1	Solve the equation $\cos 2x^{\circ} = 5\cos x^{\circ} - 3$ for $0 \le x < 360$.	5
22	12	1	Given that $f(x) = 4\sin\left(3x - \frac{\pi}{3}\right)$, evaluate $f'\left(\frac{\pi}{6}\right)$.	3
22	3	1	(a) Express $4 \sin x + 5 \cos x$ in the form $k \sin(x+a)$ where $k > 0$ and $0 < a < 2\pi$. (b) Hence solve $4 \sin x + 5 \cos x = 5.5$ for $0 \le x < 2\pi$.	4