Υ	Q	Р	RECURRENCE				
15	3	2	A version of the following problem first appeared in print in the 16th Century.				
			A frog and a toad fall to the bottom of a well that is 50 feet deep. Each day, the frog climbs 32 feet and then rests overnight. During the night, it				
			slides down $\frac{2}{3}$ of its height above the floor of the well.				
			The toad climbs 13 feet each day before resting.				
			Overnight, it slides down $\frac{1}{4}$ of its height above the floor of the well.				
			Their progress can be modelled by the recurrence relations:				
			• $f_{n+1} = \frac{1}{3}f_n + 32$, $f_1 = 32$				
			• $t_{n+1} = \frac{3}{4}t_n + 13$, $t_1 = 13$				
			where f_n and t_n are the heights reached by the frog and the toad at the end of the $n{\rm th}$ day after falling in.				
			(a) Calculate t_2 , the height of the toad at the end of the second day.	1			
			(b) Determine whether or not either of them will eventually escape from the well.	5			
16	3	1					
		_	A sequence is defined by the recurrence relation $u_{n+1} = \frac{1}{3}u_n + 10$ with $u_3 = 6$.				
			(a) Find the value of u_4 .	1			
			(b) Explain why this sequence approaches a limit as $n \to \infty$.	1			
			(c) Calculate this limit.	2			
17	9	1	A sequence is generated by the recurrence relation $u_{n+1} = m u_n + 6$ where m is a constant.				
			(a) Given $u_1 = 28$ and $u_2 = 13$, find the value of m .	2			
			(b) (i) Explain why this sequence approaches a limit as $n \to \infty$.	1			
			(ii) Calculate this limit.	2			
17	8	2	Sequences may be generated by recurrence relations of the form $u_{n+1}=ku_n-20$, $u_0=5$ where $k\in\mathbb{R}$.				
			(a) Show that $u_2 = 5k^2 - 20k - 20$.	2			
			(b) Determine the range of values of k for which $u_2 < u_0$.	4			

18	7	2		
			(a) (i) Show that $(x-2)$ is a factor of $2x^3 - 3x^2 - 3x + 2$.	2
			(ii) Hence, factorise $2x^3 - 3x^2 - 3x + 2$ fully.	2
			The fifth term, u_5 , of a sequence is $u_5 = 2a - 3$.	
			The terms of the sequence satisfy the recurrence relation $u_{n+1} = au_n - 1$.	
			(b) Show that $u_7 = 2a^3 - 3a^2 - a - 1$.	1
			For this sequence, it is known that	
			 u₇ = u₅ 	
			a limit exists.	
			(c) (i) Determine the value of a .	3
			(ii) Calculate the limit.	1
19	4	1		
			A sequence is generated by the recurrence relation	
			$u_{n+1}=mu_n+c,$	
			where the first three terms of the sequence are 6, 9 and 11.	
			(a) Find the values of m and c .	3
			(b) Hence, calculate the fourth term of the sequence.	1
19	4	2	In a forest, the population of a species of mouse is falling by $2 \cdot 7\%$ each year.	
			To increase the population scientists plan to release 30 mice into the forest at the end of March each year.	
			(a) u_n is the estimated population of mice at the start of April, n years after the population was first estimated.	
			It is known that u_n and u_{n+1} satisfy the recurrence relation $u_{n+1} = au_n + b$.	
			State the values of a and b .	1
			The scientists continue to release this species of mouse each year.	
			(b) (i) Explain why the estimated population of mice will stabilise in the long term.	1
			(ii) Calculate the long term population to the nearest hundred.	2