| Υ | Q | Р | Vectors | | |----|---|---|---|-------------| | 15 | 1 | 1 | Vectors ve 92 + 22 Is and ev 22 + 4. Observe normalization | | | | | | Vectors $\mathbf{u} = 8\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and $\mathbf{v} = -3\mathbf{i} + t\mathbf{j} - 6\mathbf{k}$ are perpendicular.
Determine the value of t . | 2 | | | | | betermine the value of t. | 2 | | 15 | 6 | 2 | Vectors p , q and r are represented on the diagram as shown. • BCDE is a parallelogram • ABE is an equilateral triangle • p = 3 • Angle ABC = 90° | | | | | | (a) Evaluate $\mathbf{p}.(\mathbf{q}+\mathbf{r})$.
(b) Express \overrightarrow{EC} in terms of \mathbf{p} , \mathbf{q} and \mathbf{r} .
(c) Given that $\overrightarrow{AE}.\overrightarrow{EC} = 9\sqrt{3} - \frac{9}{2}$, find $ \mathbf{r} $. | 3
1
3 | | 16 | 7 | 1 | Three vectors can be expressed as follows:
$\overrightarrow{FG} = -2\mathbf{i} - 6\mathbf{j} + 3\mathbf{k}$ $\overrightarrow{GH} = 3\mathbf{i} + 9\mathbf{j} - 7\mathbf{k}$ $\overrightarrow{GH} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$ | | | | | | (a) Find \overrightarrow{FH} . | 2 | | | | | (b) Hence, or otherwise, find $\overrightarrow{\mathrm{FE}}$. | 2 | | | 1 | 1 1 | | | | |----|----|-----|---|---|---| | 16 | 11 | 1 | (a) A and C are the points $(1, 3, -2)$ and $(4, -3, 4)$ respectively. | | | | | | | Point B divides AC in the ratio 1:2. | | | | | | | Find the coordinates of B. | | 2 | | | | | | | | | | | | (b) kAC is a vector of magnitude 1, where $k > 0$. | | | | | | | (b) kAC is a vector of magnitude 1, where $k > 0$. | | | | | | | Determine the value of k . | | 3 | | | | | | | | | 16 | 5 | 2 | | | | | | | | The picture shows a model of a water molecule. | | | | | | | О | | | | | | | Relative to suitable coordinate axes, the oxygen atom is positioned at point $A(-2, 2, 5)$. | | | | | | | The two hydrogen atoms are positioned at points $B(-10, 18, 7)$ and $C(-4, -6, 21)$ as shown in the diagram below. | | | | | | | C(-4, -6, 21) B(-10, 18, 7) | | | | | | | | | | | | | | A(-2, 2, 5) | | | | | | | A(-2, 2, 3) | | | | | | | (a) Express \overrightarrow{AB} and \overrightarrow{AC} in component form. | 2 | | | | | | (a) Express AB and AC in component form. | 2 | | | | | | (b) Hence, or otherwise, find the size of angle BAC. | 4 | | | 17 | 5 | 1 | Vectors \mathbf{u} and \mathbf{v} are $\begin{pmatrix} 5 \\ 1 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ -8 \\ 6 \end{pmatrix}$ respectively. | | | | | | | (a) Evaluate u. v. | 1 | | | | | | | • | | | | | | (b) | u / | | | | | | | | | | | | | | $\sqrt{\frac{\pi}{3}}$ | | | | | | | w w | | | | | | | | | | | | | | Vector w makes an angle of $\frac{\pi}{3}$ with u and $ \mathbf{w} = \sqrt{3}$. | | | | | | | Calculate u.w. | 3 | | | | | | | | | | 17 | 5 | 2 | | | |----|---|---|---|---| | | | | In the diagram, $\overrightarrow{PR} = 9\mathbf{i} + 5\mathbf{j} + 2\mathbf{k}$ and $\overrightarrow{RQ} = -12\mathbf{i} - 9\mathbf{j} + 3\mathbf{k}$. | | | | | | P R | | | | | | (a) Express \overrightarrow{PQ} in terms of i , j and k . | 2 | | | | | The point S divides QR in the ratio 1:2. | | | | | | (b) Show that $\overrightarrow{PS} = \mathbf{i} - \mathbf{j} + 4\mathbf{k}$. | 2 | | | | | (c) Hence, find the size of angle QPS. | 5 | | 18 | 5 | 1 | A $(-3, 4, -7)$, B $(5, t, 5)$ and C $(7, 9, 8)$ are collinear. | | | | | | (a) State the ratio in which B divides AC. | 1 | | | | | (b) State the value of t. | 1 | | 18 | 9 | 1 | The diagram shows a triangular prism ABC,DEF. | | | | | | $\overrightarrow{AB} = \mathbf{t}$, $\overrightarrow{AC} = \mathbf{u}$ and $\overrightarrow{AD} = \mathbf{v}$. | | | | | | B W C | | | | | | (a) Express \overrightarrow{BC} in terms of \mathbf{u} and \mathbf{t} . | 1 | | | | | M is the midpoint of BC. | | | | | | (b) Express \overrightarrow{MD} in terms of \mathbf{t} , \mathbf{u} and \mathbf{v} . | 2 | | 18 | 12 | 1 | | | |----|----|---|--|-----| | 10 | 12 | | Vectors \mathbf{a} and \mathbf{b} are such that $\mathbf{a} = 4\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$ and $\mathbf{b} = -2\mathbf{i} + \mathbf{j} + p\mathbf{k}$. | | | | | | (a) Express $2a + b$ in component form. | 1 | | | | | (b) Hence find the values of p for which $ 2\mathbf{a} + \mathbf{b} = 7$. | 3 | | 18 | 2 | 2 | Vectors \mathbf{u} and \mathbf{v} are defined by $\mathbf{u} = \begin{pmatrix} -1 \\ 4 \\ -3 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} -7 \\ 8 \\ 5 \end{pmatrix}$. (a) Find $\mathbf{u}.\mathbf{v}$. (b) Calculate the acute angle between \mathbf{u} and \mathbf{v} . | 1 4 | | 19 | 5 | 1 | (a) Show that the points A(1,5,-3), B(4,-1,0) and C(8,-9,4) are collinear. | 3 | | | | | (b) State the ratio in which B divides AC. | 1 | | | | | (b) State the ratio in which b divides no. | | | 19 | 9 | 1 | Vectors ${\bf u}$ and ${\bf v}$ have components $\begin{pmatrix} p \\ -2 \\ 4 \end{pmatrix}$ and $\begin{pmatrix} 2p+16 \\ -3 \\ 6 \end{pmatrix}$, $p \in \mathbb{R}$. | | | | | | (a) (i) Find an expression for u.v. | 1 | | | | | (ii) Determine the values of p for which ${\bf u}$ and ${\bf v}$ are perpendicular. | 3 | | | | | (b) Determine the value of p for which ${\bf u}$ and ${\bf v}$ are parallel. | 2 | | | | | | | | 19 | 3 | 2 | E,ABCD is a rectangular based pyramid. $\overrightarrow{AB} = \mathbf{p}, \overrightarrow{AD} = \mathbf{q} \text{ and } \overrightarrow{AE} = \mathbf{r}.$ | | | | | | A P B C | | | | | | (a) Express \overrightarrow{BE} in terms of \mathbf{p} and \mathbf{r} . | 1 | | | | | Point F divides BC in the ratio 3:1. | | | | | | (b) Express vector \overrightarrow{EF} in terms of \mathbf{p} , \mathbf{q} and \mathbf{r} . | 2 | | | | | | | | 19 | 14 | 2 | | |----|----|---|---| | | | | The vectors ${\bf u}$ and ${\bf v}$ are such that | | | | | • u = 4 | | | | | • v =5 | | | | | • $\mathbf{u}.(\mathbf{u}+\mathbf{v})=21$ | | | | | Determine the size of the angle between the vectors ${\bf u}$ and ${\bf v}$. | | | | | |