Υ	Q	Р	Vectors	
15	1	1	Vectors ve 92 + 22 Is and ev 22 + 4. Observe normalization	
			Vectors $\mathbf{u} = 8\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and $\mathbf{v} = -3\mathbf{i} + t\mathbf{j} - 6\mathbf{k}$ are perpendicular. Determine the value of t .	2
			betermine the value of t.	2
15	6	2	Vectors p , q and r are represented on the diagram as shown. • BCDE is a parallelogram • ABE is an equilateral triangle • p = 3 • Angle ABC = 90°	
			(a) Evaluate $\mathbf{p}.(\mathbf{q}+\mathbf{r})$. (b) Express \overrightarrow{EC} in terms of \mathbf{p} , \mathbf{q} and \mathbf{r} . (c) Given that $\overrightarrow{AE}.\overrightarrow{EC} = 9\sqrt{3} - \frac{9}{2}$, find $ \mathbf{r} $.	3 1 3
16	7	1	Three vectors can be expressed as follows: $\overrightarrow{FG} = -2\mathbf{i} - 6\mathbf{j} + 3\mathbf{k}$ $\overrightarrow{GH} = 3\mathbf{i} + 9\mathbf{j} - 7\mathbf{k}$ $\overrightarrow{GH} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$	
			(a) Find \overrightarrow{FH} .	2
			(b) Hence, or otherwise, find $\overrightarrow{\mathrm{FE}}$.	2

	1	1 1			
16	11	1	(a) A and C are the points $(1, 3, -2)$ and $(4, -3, 4)$ respectively.		
			Point B divides AC in the ratio 1:2.		
			Find the coordinates of B.		2
			(b) kAC is a vector of magnitude 1, where $k > 0$.		
			(b) kAC is a vector of magnitude 1, where $k > 0$.		
			Determine the value of k .		3
16	5	2			
			The picture shows a model of a water molecule.		
			О		
			Relative to suitable coordinate axes, the oxygen atom is positioned at point $A(-2, 2, 5)$.		
			The two hydrogen atoms are positioned at points $B(-10, 18, 7)$ and $C(-4, -6, 21)$ as shown in the diagram below.		
			C(-4, -6, 21) B(-10, 18, 7)		
			A(-2, 2, 5)		
			A(-2, 2, 3)		
			(a) Express \overrightarrow{AB} and \overrightarrow{AC} in component form.	2	
			(a) Express AB and AC in component form.	2	
			(b) Hence, or otherwise, find the size of angle BAC.	4	
17	5	1	Vectors \mathbf{u} and \mathbf{v} are $\begin{pmatrix} 5 \\ 1 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ -8 \\ 6 \end{pmatrix}$ respectively.		
			(a) Evaluate u. v.	1	
				•	
			(b)		
			u /		
			$\sqrt{\frac{\pi}{3}}$		
			w w		
			Vector w makes an angle of $\frac{\pi}{3}$ with u and $ \mathbf{w} = \sqrt{3}$.		
			Calculate u.w.	3	

17	5	2		
			In the diagram, $\overrightarrow{PR} = 9\mathbf{i} + 5\mathbf{j} + 2\mathbf{k}$ and $\overrightarrow{RQ} = -12\mathbf{i} - 9\mathbf{j} + 3\mathbf{k}$.	
			P R	
			(a) Express \overrightarrow{PQ} in terms of i , j and k .	2
			The point S divides QR in the ratio 1:2.	
			(b) Show that $\overrightarrow{PS} = \mathbf{i} - \mathbf{j} + 4\mathbf{k}$.	2
			(c) Hence, find the size of angle QPS.	5
18	5	1	A $(-3, 4, -7)$, B $(5, t, 5)$ and C $(7, 9, 8)$ are collinear.	
			(a) State the ratio in which B divides AC.	1
			(b) State the value of t.	1
18	9	1	The diagram shows a triangular prism ABC,DEF.	
			$\overrightarrow{AB} = \mathbf{t}$, $\overrightarrow{AC} = \mathbf{u}$ and $\overrightarrow{AD} = \mathbf{v}$.	
			B W C	
			(a) Express \overrightarrow{BC} in terms of \mathbf{u} and \mathbf{t} .	1
			M is the midpoint of BC.	
			(b) Express \overrightarrow{MD} in terms of \mathbf{t} , \mathbf{u} and \mathbf{v} .	2

18	12	1		
10	12		Vectors \mathbf{a} and \mathbf{b} are such that $\mathbf{a} = 4\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$ and $\mathbf{b} = -2\mathbf{i} + \mathbf{j} + p\mathbf{k}$.	
			(a) Express $2a + b$ in component form.	1
			(b) Hence find the values of p for which $ 2\mathbf{a} + \mathbf{b} = 7$.	3
18	2	2	Vectors \mathbf{u} and \mathbf{v} are defined by $\mathbf{u} = \begin{pmatrix} -1 \\ 4 \\ -3 \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} -7 \\ 8 \\ 5 \end{pmatrix}$. (a) Find $\mathbf{u}.\mathbf{v}$. (b) Calculate the acute angle between \mathbf{u} and \mathbf{v} .	1 4
19	5	1	(a) Show that the points A(1,5,-3), B(4,-1,0) and C(8,-9,4) are collinear.	3
			(b) State the ratio in which B divides AC.	1
			(b) State the ratio in which b divides no.	
19	9	1	Vectors ${\bf u}$ and ${\bf v}$ have components $\begin{pmatrix} p \\ -2 \\ 4 \end{pmatrix}$ and $\begin{pmatrix} 2p+16 \\ -3 \\ 6 \end{pmatrix}$, $p \in \mathbb{R}$.	
			(a) (i) Find an expression for u.v.	1
			(ii) Determine the values of p for which ${\bf u}$ and ${\bf v}$ are perpendicular.	3
			(b) Determine the value of p for which ${\bf u}$ and ${\bf v}$ are parallel.	2
19	3	2	E,ABCD is a rectangular based pyramid. $\overrightarrow{AB} = \mathbf{p}, \overrightarrow{AD} = \mathbf{q} \text{ and } \overrightarrow{AE} = \mathbf{r}.$	
			A P B C	
			(a) Express \overrightarrow{BE} in terms of \mathbf{p} and \mathbf{r} .	1
			Point F divides BC in the ratio 3:1.	
			(b) Express vector \overrightarrow{EF} in terms of \mathbf{p} , \mathbf{q} and \mathbf{r} .	2

19	14	2	
			The vectors ${\bf u}$ and ${\bf v}$ are such that
			• u = 4
			• v =5
			• $\mathbf{u}.(\mathbf{u}+\mathbf{v})=21$
			Determine the size of the angle between the vectors ${\bf u}$ and ${\bf v}$.