Mini Prelim Examination 2005 / 2006 (Assessing Unit 3 + revision from Units 1 & 2)

MATHEMATICS Higher Grade

Time allowed - 1 hour 15 minutes

Read Carefully

- 1. Calculators may be used in this paper.
- 2. Full credit will be given only where the solution contains appropriate working.
- 3. Answers obtained by readings from scale drawings will not receive any credit.
- 4. This examination paper contains questions graded at all levels.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Trigonometric formulae:	$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$
	$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$
	$\sin 2A = 2\sin A \cos A$
	$\cos 2A = \cos^2 A - \sin^2 A$
	$= 2\cos^2 A - 1$
	$= 1 - 2 \sin^2 A$

Scalar Product: $a \cdot b = |a| |b| \cos\theta$, where θ is the angle between a and b.

or

$$\boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{a}_1 \boldsymbol{b}_1 + \boldsymbol{a}_2 \boldsymbol{b}_2 + \boldsymbol{a}_3 \boldsymbol{b}_3$$
 where $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

Table of standard derivatives:

f(x)	f'(x)
sin <i>ax</i>	$a\cos ax$
cos <i>ax</i>	$-a\sin ax$

Table of standard integrals:

f(x)	$\int f(x) dx$
$\sin ax$ $\cos ax$	$-\frac{1}{a}\cos ax + C$ $\frac{1}{a}\sin ax + C$

All questions should be attempted

1. Consider the diagram below.

(a) Triangle PQS is isosceles with $|\overrightarrow{QS}|^2 = |\overrightarrow{QP}|^2$. Use this information to **show algebraically** that k = 2 where k < 5. 6

(b) Hence establish the coordinates of R if $\overrightarrow{PR} = 3\overrightarrow{PS}$.

2. Show by solving the following logarithmic equation that the **exact value** of x can be written in the form $4p\sqrt{p}$ and write down the value of p.

$$\log_{x}(2x) + 2\log_{x}(8) = 3$$
 6

3. A function is defined as $f(\theta) = 4\cos 2\theta$ where $0 \le \theta \le \pi$.

Part of the graph of $y = f(\theta)$ is shown.

(b) Calculate the shaded area in square units.

3

4. Find the value of c if x + 2 is a factor of the expression

$$x^{3} + (c+2)x^{2} + x - 3c \qquad 4$$

5. The rate of decomposition of an isotope follows the exponential decay $M = M_0 e^{-Pt}$, where *M* is the mass remaining after *t* years and M_0 is the initial mass. *P* is a constant.

Given that the isotope loses approximately 20% of its mass in 32 years, calculate the value of P, giving your answer correct to one significant figure.

6. A function defined on a suitable domain is given as $f(x) = (x^2 - x)^4$.

Find the *x* coordinates of the three stationary points of this function.

7. The power, E, emitting from a pulse generator is given by the formula

$$E = \sqrt{7} \sin 30t^{\circ} + 3\cos 30t^{\circ} + 4$$
, where *t* is the time elapsed, in seconds, from switch on.

- (a) Express E in the form $k \sin(30t + \alpha)^{\circ} + 4$, where k > 0 and $0 \le \alpha \le 360$.
- (b) Hence find t when E = 4, where t lies in the interval 0 < t < 6.
- A cuboid measuring 6 by 4 by 10 units is placed on a rectangular grid as shown.
 M is the mid-point of side OD and N is the mid-point of side GF.

- (a) Write down the coordinates of M and N.
- (b) Calculate the size of angle MAN.

1

5

6

4

3

Higher Grade - Unit 3 Mini-Prelim 2005/2006

Marking Scheme

	Give 1 mark for each •	Illustration(s) for awarding each mark
1.	 (a) ans: proof 6 marks 1 for components of QS 2 for magnitude squared of QS 3 for componentsof QP and mag.squ. 4 for equating together 5 for solving and discard 6 for answer (b) ans: R(8,10,0) 3 marks 1 for strategy (i.e. vector algebra) 	(a) •1 $\overrightarrow{QS} = \begin{pmatrix} 2\\ 2\\ k \end{pmatrix} - \begin{pmatrix} -1\\ 2\\ 6 \end{pmatrix} = \begin{pmatrix} 3\\ 0\\ k-6 \end{pmatrix}$ •2 $ \overrightarrow{QS} ^2 = 9 + 0 + (k-6)^2 = k^2 - 12k + 45$ •3 $\overrightarrow{QP} = \begin{pmatrix} 0\\ -4\\ -3 \end{pmatrix}$, $ \overrightarrow{QP} ^2 = 25$ •4 $k^2 - 12k + 45 = 25$ •5 $(k-10)(k-2) = 0 + k = \sqrt{2}$ are 2
	 2 for <i>r</i> the subject 3 answer 	(b) •1 $r - p = 3(s - p)$ •2 $r = 3s - 2p$ •3 $R(8,10,0)$
2.	ans: $x = 8\sqrt{2}$, $p = 2$ 6 marks •1 2 up as a power •2 combining logs •3 converting to index form •4 solving for x •5 simplifying surd •6 answer for p	•1 $\log_x 2x + \log_x 8^2 = 3$ •2 $\log_x 128x = 3$ •3 $x^3 = 128x$ •4 $x^2 = 128$ $\therefore x = \sqrt{128}$ •5 $\sqrt{128} = 8\sqrt{2}$ •6 $p = 2$
3.	(a) ans: $a = \frac{\pi}{4}$ • 1 solving $\cos 2\theta$ to zero • 2 answer (b) ans: 2 units ² • 1 setting up integral • 2 integrating • 3 substituting limits • 4 answer 2 marks • 4 marks	(a) •1 $\cos 2\theta = 0$ •2 $2\theta = \frac{\pi}{2}$, $\theta = \frac{\pi}{4}$ (b) •1 $A = \int_{0}^{\frac{\pi}{4}} 4\cos 2\theta \ d\theta$ •2 $4 \times \frac{1}{2}\sin 2\theta \therefore [2\sin 2\theta]_{0}^{\frac{\pi}{4}}$ •3 $A = (2\sin 2(\frac{\pi}{4})) - (2\sin 0)$ •4 $A = 2 \text{ units}^{2}$

	Give 1 mark for each •	Illustration(s) for awarding each mark
4.	 ans: c = 2 4 marks 1 for setting up synthetic division 2 for -2 3 for performing division 4 solving to answer 	•1 1 $c+2$ 1 $-3c$ •2 -2 1 $c+2$ 1 $-3c$ •3 -2 1 $c+2$ 1 $-3c$ •3 -2 1 $c+2$ 1 $-3c$ -2 -2c -2c -4c-2 1 $c -2c -2c -4c-2$ 1 $c -3c + 4c - 2 = 0$ $\therefore c = 2$
5.	ans: $P = 0.007$ 5 marks•1for realising 80% left•2solving exponential to 0.8 •3taking logs of both sides•4releasing power•5solving to answer(ignore rounding, instructions on rounding given to allow students to settle on an answer)	•1 0.8 appearing •2 $e^{-32P} = 0.8$ •3 $\log_e e^{-32P} = \log_e 0.8$ (pupils may take logs to the base 10) •4 $-32P\log_e e = \log_e 0.8$ (or equiv) •5 $P = \frac{\log_e 0.8}{-32} = 0.00697 = 0.007$
6.	ans: $x = 0$, $\frac{1}{2}$, 1 •1 knowing to differentiate •2 differentiating power •3 differentiating inside bracket •4 solving to zero •5 for first value of x •6 for remaining two values (if only two values -1 mark)	•1 $f'(x) =$ •2 $f'(x) = 4(x^2 - x)^3$ •3 $f'(x) = \times (2x - 1)$ •4 $4(x^2 - x)^3 (2x - 1) = 0$ •5 $2x - 1 = 0 \therefore x = \frac{1}{2}$ •6 $x^2 - x = 0$ $x(x - 1) = 0 \therefore x = 0 \text{ or } 1$

	Give 1 mark for each •	Illustration(s) for awarding each mark
7.	 (a) ans: E = 4sin(30t + 48 ⋅ 6)° + 4 4 marks 1 for replacement 2 equating coefficients 3 for k 4 for alpha (b) ans: t = 4 ⋅ 38 seconds 3 marks 1 forming equation and dealing with numbers 2 finding 3 solution for 30t + 48 ⋅ 6 3 correct answer 	(a) •1 = $k \sin 30t \cos \alpha + k \cos 30t \sin \alpha$ •2 $k \sin \alpha = 3$; $k \cos \alpha = \sqrt{7}$ •3 $k = \sqrt{3^3 + (\sqrt{7})^2} = \sqrt{16} = 4$ •4 $\tan \alpha = \frac{3}{\sqrt{7}}$ $\therefore \alpha = 48 \cdot 6^\circ$ (b) •1 $4 \sin(30t + 48 \cdot 6)^\circ + 4 = 4$ $4 \sin(30t + 48 \cdot 6)^\circ = 0$ $\sin(30t + 48 \cdot 6)^\circ = 0$ •2 $30t + 48 \cdot 6 = 0$, 180 , 360 •3 $t = 4 \cdot 38$ (off the 180)
8.	(a) ans: $M(0,0,5)$, $N(3,4,10)$ 1 mark •1 answers (b) ans: $\angle MAN = 38 \cdot 9^{\circ}$ 6 marks •1 choosing correct displacements •2 finding components (both displacements) •3 calculating magnitudes •4 finding scalar product •5 substitution in formula •6 answer	(a) •1 $M(0,0,5)$, $N(3,4,10)$ (b) •1 $\overrightarrow{AM} =$; $\overrightarrow{AN} =$ •2 $\overrightarrow{AM} = \begin{pmatrix} -6\\0\\5 \end{pmatrix}$; $\overrightarrow{AN} = \begin{pmatrix} -3\\4\\10 \end{pmatrix}$ •3 $ \overrightarrow{AM} = \sqrt{61}$; $ \overrightarrow{AN} = \sqrt{125}$ •4 $\overrightarrow{AM} \cdot \overrightarrow{AN} = \begin{pmatrix} -6\\0\\5 \end{pmatrix} \cdot \begin{pmatrix} -3\\4\\10 \end{pmatrix} = 18 + 50 = 68$ •5 $\cos \theta = \frac{68}{\sqrt{61} \cdot \sqrt{125}}$ •6 $\theta = 38 \cdot 9^\circ$
		Total 50 marks