Grade Booster 2: Pure Maths

(a) If $f(x) = \frac{\ln x}{2x^2}$, $x \neq 0$, find f'(x). Fully simplify your answer.

3

(b) If $y = \csc^2 3x$, show that

$$\frac{dy}{dx} + 6y \cot 3x = 0.$$

2

The velocity of a particle after t seconds of travel can be expressed as $\mathbf{v} = (3\sin 2t)\mathbf{i} + (\cos 2t - 3)\mathbf{j} \text{ms}^{-1}$ where \mathbf{i} and \mathbf{j} are unit vectors in horizontal and vertical directions respectively.

Find the magnitude of the acceleration of the particle when $t = \frac{\pi}{6}$ seconds.

4

Find the equation of the tangent to the curve $y = x \ln x$ at the point where x = e.

3

(a) Show that $\frac{3x^3 + 8x^2 - 11}{(x+1)(x+3)(x-2)}$ can be written as $3 + \frac{2x^2 + 15x + 7}{x^3 + 2x^2 - 5x - 6}$.

3

(b) Hence express $\frac{3x^3 + 8x^2 - 11}{(x+1)(x+3)(x-2)}$ in partial fractions.

4

A glass bowl is modelled by rotating the curve $y = e^{\frac{x}{12}}$ between x = 15 and x = 30 through 2π radians about the x-axis as shown in the diagram.

(a) Find the volume of the bowl.

3

(b) A line is to be put on the bowl to indicate when it is half full. How far above the base of the bowl should this line be marked?

3

,	П
Given that $y = e^{5x} \tan 2x$, find $\frac{dy}{dx}$.	3
A curve is defined by	
$y = \frac{\sin x}{2 - \cos x} \text{ for } 0 \le x \le \pi.$	
Find the exact values of the coordinates of the stationary point of this curve.	5
Express $\frac{3x^2 + 4x + 17}{(x-3)(x^2 + 5)}$ as a sum of partial fractions.	4
Use integration by parts to obtain $\int x^2 \sin 5x dx$.	5
A curve is defined by $3y^2 - x^2y = 4$, $x \ge 0$, $y \ge \frac{2}{\sqrt{3}}$.	
Use implicit differentiation to find the gradient of the tangent when $x = 2$.	5
A mass of $0.25\mathrm{kg}$ is attached to a horizontal spring of natural length 1 metre and modulus of elasticity 20 newtons. The spring is stretched and then released. It experiences a resistive force of magnitude $6v$ newtons, where v is the velocity of the mass.	
(a) Show that the subsequent motion satisfies the second order differential equation	
$\frac{d^2x}{dt^2} + 24\frac{dx}{dt} + 80x = 0.$	2
(b) Solve this second order differential equation given that the mass is released from rest with an extension in the spring of $0.2\mathrm{m}$.	6
(c) Show that the acceleration is equal to zero when $t = \frac{1}{16} \ln 5$ seconds and find the displacement at this time.	3
Find the general solution, in the form $y = f(x)$, of the differential equation	
$\frac{1}{\cos x} \frac{dy}{dx} + y \tan x = \tan x, \ 0 < x < \frac{\pi}{2}$	6

(a)	express 1/2 in partial fractions.	
(<i>a</i>)	$1-y^2$ In partial fractions.	3

(b) Use the substitution
$$u = \sqrt{1-x}$$
 to obtain $\int \frac{dx}{x\sqrt{1-x}}$, $0 < x < 1$.

Qu	Solutions
1	$\frac{1 - 2\ln x}{2x^3}$ $\frac{dy}{dx} + 6y \cot 3x = 0$
2	$ \mathbf{a} = \sqrt{12} = 2\sqrt{3} \mathrm{ms}^{-2} [3.46 \mathrm{ms}^{-2}]$
3	y-e=2(x-e)
4	$3 + \frac{2x^2 + 15x + 7}{x^3 + 2x^2 - 5x - 6}$ $3 + \frac{2x^2 + 15x + 7}{(x+1)(x+3)(x-2)}$
5	$V = 6\pi e^5 - 6\pi e^{2.5}$ (2570cm³) Hence line should be positioned $10 \cdot 1 \text{cm}$ up the side of the bowl.
6	$= e^{5x} \cdot 2\sec^2 2x + \tan 2x \cdot 5e^{5x}$ $= e^{5x} \left(2\sec^2 2x + 5\tan 2x \right)$

7	For a S.P., $\frac{dy}{dx} = 0 \Leftrightarrow \frac{2\cos x - 1}{(2 - \cos x)^2} = 0$
	$\Leftrightarrow 2\cos x - 1 = 0$ $\Leftrightarrow \cos x = \frac{1}{2}$
	2
	$x = \frac{\pi}{3}$
	when $x = \frac{\pi}{3}$, $y = \frac{\sin \frac{\pi}{3}}{\left(2 - \cos \frac{\pi}{3}\right)} = \frac{\sqrt{3}}{3}$
8	
	$\frac{4}{x-3} + \frac{1-x}{x^2+5}$
9	$I = \frac{-x^2}{2}\cos 5x + \frac{2}{5}\left(\frac{x}{5}\sin 5x + \frac{1}{25}\cos 5x\right) + c$
	$= \left[\left(\frac{2}{125} - \frac{x^2}{5} \right) \cos 5x + \frac{2x}{25} \sin 5x + c \right]$
10	$\frac{dy}{dx} = \frac{2 \cdot 22}{6 \cdot 2 - 2^2} = 1$
11	$\frac{d^2x}{dt^2} + 24\frac{dx}{dt} + 80x = 0$
	A = 0.25, B = -0.05
	$x = 0.25e^{-4t} - 0.05e^{-20t}$
12	General Solution $y = 1 + Ce^{\cos x}$
	ALTERNATIVE SOLUTION -
	$y = 1 - Be^{\cos x}$

13	$\frac{1}{1-y^2} = \frac{1}{2} \left(\frac{1}{1+y} + \frac{1}{1-y} \right)$
	$\ell n \left \frac{1 - \sqrt{1 - x}}{1 + \sqrt{1 - x}} \right + C$