| Υ | Q | Differentiation | | |------|----|--|---| | 2024 | 4 | Given $y = \frac{3x}{1+x^2}$, find $\frac{dy}{dx}$ and simplify your answer. | 3 | | 2024 | 6 | A function is defined on a suitable domain by $f(x) = \csc^2(3x)$. | - | | | | Evaluate $f'\left(\frac{\pi}{4}\right)$. | 3 | | 2024 | 9 | The velocity, $v \text{ m s}^{-1}$, of a particle is defined by $3v + t^2e^v = 9$, where t is the time in seconds, and $t > 0$. | | | | | Use implicit differentiation to determine the instantaneous acceleration of the particle when $\nu=0$. | 5 | | 2024 | 16 | A curve is defined parametrically by $x = e^{3t} - e^{2t}$, $y = e^{3t} + e^{2t}$. | | | | | Find the coordinates of the point where the gradient of the curve is 2. | 4 | | 2023 | 2 | Differentiate $f(x) = \ln(\sec 2x)$ and simplify your answer. | 3 | | 2023 | 7 | Given $f(t) = \frac{5t}{t^2 + 3}$, find the value of k when $f'(k) = 0$, where $k > 0$. | 3 | | 2023 | 12 | A bead travels along a wire modelled by part of the curve with equation $x^3 + y^2 + 2x - 4y = 33$. | | | | | The bead passes through two points with coordinates of the form $(2, k)$. | | | | | Determine the value of k for which the gradient is positive. | 5 | | 2022 | 13 | A function is defined as $f(x) = \frac{\sec x}{\tan x + 1}$, where $0 \le x < \frac{\pi}{2}$. | - | | | | (a) Show that $f'(x) = f(x) \left(\frac{\tan x - 1}{\tan x + 1} \right)$, given that $1 + \tan^2 x = \sec^2 x$. | 3 | | | | (b) Hence find $\int \frac{\tan x - 1}{\tan x + 1} dx$. | 2 | | 2019 | 2 | (a) If $f(x) = xe^{-3x}$, find the exact value of $f'(-1)$. | 3 | | | | (b) Given $g(t) = \frac{3t}{(2t+1)^2}$, find $g'(t)$, simplifying your answer. | 3 | | 2019 | 7 | A function, f , is defined on a suitable domain by $f(t) = \ln(\sec 2t + \tan 2t)$. | | | | | Differentiate $f\left(t ight)$ and simplify your answer. | 4 | | 2019 | 10 | A curve is defined implicitly by $3y + x^2e^{2y} = 9$, $x > 0$. | | | | | Find the gradient of the tangent to the curve when $y = 0$. | 4 | | 2018 | 4 | A function is defined as $f(x) = e^{\sec^2 x}$ where $0 \le x < \frac{\pi}{2}$. | _ | | | | Find the exact value of $f'\left(\frac{\pi}{4}\right)$. | 3 | | | | | | | 2018 | 8 | The motion of a particle is defined by the equations | | |--------------|----|--|---| | | | $x = t(t+4)$ and $y = t(1-t)^3$ | | | | | | | | | | where <i>t</i> is the time elapsed since the start of motion. | | | | | Find the speed of the particle when $t = 3$. | 4 | | 2017 | 2 | (a) If $f(x) = \frac{\ln x}{2x^2}$, $x \ne 0$, find $f'(x)$. Fully simplify your answer. | 3 | | | | (b) If $y = \csc^2 3x$, show that | | | | | $\frac{dy}{dx} + 6y \cot 3x = 0.$ | 3 | | 2017 | 11 | A curve is defined by $3y^2 - x^2y = 4$, $x \ge 0$, $y \ge \frac{2}{\sqrt{3}}$. | | | | | Use implicit differentiation to find the gradient of the tangent when $x = 2$. | 5 | | 2016 | 4 | Find the equation of the tangent to the curve $y = x \ln x$ at the point where $x = e$. | 3 | | 2016 | 10 | A stone is thrown from the top of a cliff and the subsequent motion can be modelled in the xy plane by the equations $x=4t$ and $y=20+2t-5t^2$. | | | | | (a) Use parametric differentiation to find $\frac{dy}{dx}$ in terms of t . | 2 | | | | (b) (i) Find the angle of projection of the stone. | 2 | | | | (ii) By considering $\frac{dy}{dx}$ find the value of t when the stone is moving at 45° | | | | | below the horizontal. | 2 | | 2016
Spec | 2 | Given $y = e^{x^2} \cos x$ find $\frac{dy}{dx}$. | 3 | | 2016
Spec | 7 | Calculate the gradient of the tangent to the curve $xy^2 - 4xy = 5$ at the point (1,5). | 4 |