Υ	Q	Differentiation	
2024	4	Given $y = \frac{3x}{1+x^2}$, find $\frac{dy}{dx}$ and simplify your answer.	3
2024	6	A function is defined on a suitable domain by $f(x) = \csc^2(3x)$.	-
		Evaluate $f'\left(\frac{\pi}{4}\right)$.	3
2024	9	The velocity, $v \text{ m s}^{-1}$, of a particle is defined by $3v + t^2e^v = 9$, where t is the time in seconds, and $t > 0$.	
		Use implicit differentiation to determine the instantaneous acceleration of the particle when $\nu=0$.	5
2024	16	A curve is defined parametrically by $x = e^{3t} - e^{2t}$, $y = e^{3t} + e^{2t}$.	
		Find the coordinates of the point where the gradient of the curve is 2.	4
2023	2	Differentiate $f(x) = \ln(\sec 2x)$ and simplify your answer.	3
2023	7	Given $f(t) = \frac{5t}{t^2 + 3}$, find the value of k when $f'(k) = 0$, where $k > 0$.	3
2023	12	A bead travels along a wire modelled by part of the curve with equation $x^3 + y^2 + 2x - 4y = 33$.	
		The bead passes through two points with coordinates of the form $(2, k)$.	
		Determine the value of k for which the gradient is positive.	5
2022	13	A function is defined as $f(x) = \frac{\sec x}{\tan x + 1}$, where $0 \le x < \frac{\pi}{2}$.	-
		(a) Show that $f'(x) = f(x) \left(\frac{\tan x - 1}{\tan x + 1} \right)$, given that $1 + \tan^2 x = \sec^2 x$.	3
		(b) Hence find $\int \frac{\tan x - 1}{\tan x + 1} dx$.	2
2019	2	(a) If $f(x) = xe^{-3x}$, find the exact value of $f'(-1)$.	3
		(b) Given $g(t) = \frac{3t}{(2t+1)^2}$, find $g'(t)$, simplifying your answer.	3
2019	7	A function, f , is defined on a suitable domain by $f(t) = \ln(\sec 2t + \tan 2t)$.	
		Differentiate $f\left(t ight)$ and simplify your answer.	4
2019	10	A curve is defined implicitly by $3y + x^2e^{2y} = 9$, $x > 0$.	
		Find the gradient of the tangent to the curve when $y = 0$.	4
2018	4	A function is defined as $f(x) = e^{\sec^2 x}$ where $0 \le x < \frac{\pi}{2}$.	_
		Find the exact value of $f'\left(\frac{\pi}{4}\right)$.	3

2018	8	The motion of a particle is defined by the equations	
		$x = t(t+4)$ and $y = t(1-t)^3$	
		where <i>t</i> is the time elapsed since the start of motion.	
		Find the speed of the particle when $t = 3$.	4
2017	2	(a) If $f(x) = \frac{\ln x}{2x^2}$, $x \ne 0$, find $f'(x)$. Fully simplify your answer.	3
		(b) If $y = \csc^2 3x$, show that	
		$\frac{dy}{dx} + 6y \cot 3x = 0.$	3
2017	11	A curve is defined by $3y^2 - x^2y = 4$, $x \ge 0$, $y \ge \frac{2}{\sqrt{3}}$.	
		Use implicit differentiation to find the gradient of the tangent when $x = 2$.	5
2016	4	Find the equation of the tangent to the curve $y = x \ln x$ at the point where $x = e$.	3
2016	10	A stone is thrown from the top of a cliff and the subsequent motion can be modelled in the xy plane by the equations $x=4t$ and $y=20+2t-5t^2$.	
		(a) Use parametric differentiation to find $\frac{dy}{dx}$ in terms of t .	2
		(b) (i) Find the angle of projection of the stone.	2
		(ii) By considering $\frac{dy}{dx}$ find the value of t when the stone is moving at 45°	
		below the horizontal.	2
2016 Spec	2	Given $y = e^{x^2} \cos x$ find $\frac{dy}{dx}$.	3
2016 Spec	7	Calculate the gradient of the tangent to the curve $xy^2 - 4xy = 5$ at the point (1,5).	4