Detailed marking instructions for each question

Question		Generic scheme	Illustrative scheme	Max mark		
1.		 ¹ choose appropriate equation of motion and substitute to find acceleration. 	•1 $v^2 = u^2 + 2as$ $14^2 = 10^2 + 2 \times 1200 \times a$ $a = \frac{14^2 - 10^2}{2400} = \frac{96}{2400} = 0.04 \mathrm{ms}^{-2}$	5		
		• ² find final velocity before deceleration.	• ² $v = u + at = 14 + 0.04 \times 120$ = $18 \cdot 8 \text{ms}^{-1}$			
		• ³ substitution to find further distance travelled.	$s = ut + \frac{1}{2}at^{2}$ $14 \times 120 + \frac{1}{2} \times 0.04 \times 120^{2} = 1968 \text{ m}$			
		• ⁴ find stopping distance	$v^{2} = u^{2} + 2as$ $\bullet^{4} 0 = 18 \cdot 8^{2} - 2 \times 0 \cdot 04 \times s$ $s = 4418$			
		• ⁵ calculate total distance	• ⁵ $total = 1200 + 1968 + 4418$ = 7586m [7 · 59km]			
Notes: 1. accept distance answers in metres or kilometres						
Commonly	Obse	erved Responses:				

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark		
2.	(a)		 use correct form of partial fractions 	•1 $\frac{13+6x+5x^2}{(1+x)(2-x)(3+x)}$ $=\frac{A}{1+x}+\frac{B}{2-x}+\frac{C}{3+x}$	4		
			• ² equate numerators	• ² $13 + 6x + 5x^2 = A(2 - x)(3 + x) + B(1 + x)(3 + x) + C(2 - x)(1 + x)$			
			• ³ find one constant	• ³ $A = 2$ or $B = 3$ or $C = -4$			
			 ⁴ find remaining constants and state the partial fractions 	• ⁴ $A = 2, B = 3, C = -4$ $\frac{2}{1+x} + \frac{3}{2-x} - \frac{4}{3+x}$			
Note	es:						
Com	monly	v Obse	erved Responses:				
	(b)		 ⁵ rewrite integral and integrate one term correctly 	• ⁵ $\int_{0}^{1} \frac{2}{1+x} + \frac{3}{2-x} - \frac{4}{3+x} dx$ = $2\ln 1+x $	3		
			• ⁶ complete integration	• ⁶ 3ln $ 2 - x - 4 \ln 3 + x $			
			• ⁷ substitute and simplify to correct form	$(2\ln 2 - 3\ln 1 - 4\ln 4)$ • ⁷ -(2ln 1 - 3ln 2 - 4ln 3) = ln $\frac{81}{8}$			
Note	Notes:						
Com	Commonly Observed Responses:						

Q	Question		Generic scheme	Illustrative scheme	Max mark	
3.			• ¹ use Newton's second law with frictional force	• $ma = -\mu R$ $ma = -\mu mg$	5	
			• ² calculate the deceleration	• ² $a = -\mu g$ $a = -2 \cdot 45 \text{ms}^{-2} \left[\frac{-g}{4} \text{ms}^{-2}\right]$		
			• ³ calculate speed immediately before the collision	• ³ $v^2 = 12^2 + 2 \times -2 \cdot 45 \times 20$ $v = 6 \cdot 78 \text{ ms}^{-1}$		
			• ⁴ know to use conservation of momentum and start substitution	• ⁴ $m_1u_1 + m_2u_2 = (m_1 + m_2)v$		
			• ⁵ calculate v	• ⁵ 10+6.78+5×0=15v v = 4.52ms ⁻¹ $\left[\frac{2\sqrt{46}}{3}\right]$		
Notes: 1. • ⁴ initial or final momentum should begin to be calculated						
Com • ³ <i>a</i> =	Commonly Observed Responses: • ³ $a = +2.45 \text{ms}^{-2}$ leading to • ⁵ $v = 10.4 \text{ms}^{-1}$					

Que	estion	Generic scheme Illustrative scheme Market	lax ark			
Alter	native	ution (work/energy principle)				
3.		• ¹ consider energy at start and immediately before collision • ¹ start $E_K = \frac{1}{2}mv^2 = \frac{1}{2} \times 10 \times 12^2 = 720J$ before collision $E_K = \frac{1}{2}mv^2$	5			
		$e^{2} \text{ ration } \psi \text{ ang } v \text{ b } 25 \times 10 \times 76^{\circ} \text{ b } 10^{\circ} \text{ b } 10^{\circ} \text{ b } 10^{\circ} \text{ c } 10^{\circ} \text$				
		• ³ use conservation of energy to calculate speed just before collision • ³ $v = \sqrt{\frac{230 \times 2}{10}} = \sqrt{46} = 6.78 \text{ms}^{-1}$				
		• ⁴ know to use conservation of momentum and start substitution • ⁴ $m_1u_1 + m_2u_2 = (m_1 + m_2)v$				
		• ⁵ calculate v $v = 4.52 \text{ ms}^{-1}$				
Note: 1. • ⁴	Notes: 1. • ⁴ initial or final momentum should begin to be calculated					
Comr	Commonly Observed Responses:					

Question		'n	Generic Scheme	Illustrative Scheme	Max Mark	
4.			 ¹ start to use chain rule to find derivative 	•1 $f'(x) = e^{\sec^2 x} \times \frac{d}{dx} \sec^2 x$	3	
			• ² complete the differentiation	• ² $2 \sec^2 x \tan x e^{\sec^2 x}$		
			• ³ substitute $x = \frac{\pi}{4}$	• ³ $\sec \frac{\pi}{4} = \sqrt{2}$ $\sec^2 \frac{\pi}{4} = 2$ $\tan \frac{\pi}{4} = 1$ $f'\left(\frac{\pi}{4}\right) = 2 \times 2 \times 1 \times e^2$		
Notes: 1. \bullet^1 clear evidence to show multiplication by the <i>derivative</i> of $\sec^2 x$.						
Commonly Observed Responses:						

Question		n	Generic scheme Illustrative scheme M	lax ark			
5.			• ¹ denotes quantities appropriately (via diagram or otherwise) and resolve vertically • ¹ $Tcos \theta = mg$	5			
			• ² use Newton's 2 nd law horizontally with circular motion • ² $T \sin \theta = mr\omega^2$				
			• ³ eliminate <i>T</i> and <i>m</i> • ³ $\tan \theta = \frac{r\omega^2}{g}$				
			• ⁴ use $l = 2r$ to find a value for $\tan \theta$ • ⁴ $\tan \theta = \frac{1}{\sqrt{3}} \left[\sin \theta = \frac{1}{2} \theta = 30^{\circ} \right]$ or evaluate θ				
			• ⁵ complete proof $\frac{1}{\sqrt{3}} = \frac{l\omega^2}{2g}$ • ⁵ $\sqrt{3}l\omega^2 = 2g$ $\omega^2 = \frac{2g}{\sqrt{3}l}$				
Note	Notes:						
Com	monly	Obse	erved Responses:				

Question		on	Generic Scheme	Illustrative Scheme	Max Mark		
6.			• ¹ express volume as an integral	• ¹ $V = \pi \int y^2 dx$	4		
			• ² use integral with limits substitute for y^2	• ² $V = \pi \int_{-2}^{3} (9 - x^2) dx$			
			• ³ integrate	• ³ $V = \pi \left[9x - \frac{1}{3}x^3 \right]_{-2}^{3}$			
			• ⁴ evaluate	• ⁴ $\frac{100\pi}{3}$ [105]			
Note	Notes:						
Com	Commonly Observed Responses:						

n	Generic Scheme	Illustrative Scheme	Max Mark
	• ¹ calculate ω	• ¹ $\omega = \frac{2\pi}{10}$ $\omega = \frac{\pi}{5}$	4
	• ² state equation for position and start to solve	• ² $x = 6\sin\frac{\pi}{5}t$ $6\sin\frac{\pi}{5}t = 4$	
	• ³⁺⁴ obtain values for t	• ³⁺⁴ $\frac{\pi}{5}t = 0.730, 2.41$	
		$t = 1.16, \ 3.84$	
izonta	Il and vertical marking.		
Ubse			
	Method 1	Method 1	2
	• ⁵ use second value of t to find v	$v = a\omega \cos \omega t$ • ⁵ $v = \frac{6\pi}{5} \cos(\frac{\pi}{5} \times 3.84)$	
	• ⁶ evaluate and interpret solution	 •⁶ v = −2·81 ms⁻¹ so particle will be travelling back towards A with speed of 2·81ms⁻¹ 	
ilable	where v is negative.		
Ubse			•
	 Method 2 •⁵ use second value of t to find v 	Method 2 $v^{2} = \omega^{2} (a^{2} - x^{2})$ • ⁵ $v^{2} = \left(\frac{\pi}{5}\right)^{2} (6^{2} - 4^{2})$	2
	• ⁶ evaluate and interpret solution.	• ⁶ $v = -2.81 \text{ ms}^{-1}$ so for second time particle will be travelling back towards A with a speed of 2.81 ms^{-1} .	
i	n zonta Obse	n Generic Scheme •1 calculate ω •2 state equation for position and start to solve •3*4 obtain values for t Zontal and vertical marking. Observed Responses: Method 1 •5 •5 use second value of t to find v •6 evaluate and interpret solution ilable where v is negative. Observed Responses: Method 2 •5 •5 use second value of t to find v •6 evaluate and interpret solution	nGeneric SchemeIllustrative Scheme•1calculate ω •1 $\omega = \frac{2\pi}{10}$ $\omega = \frac{\pi}{5}$ •2state equation for position and start to solve•1 $\omega = \frac{2\pi}{10}$ $\omega = \frac{\pi}{5}$ •3•3state equation for position and start to solve•1 $\omega = \frac{2\pi}{10}$ $\omega = \frac{\pi}{5}$ •3•3•4 $\omega = \frac{\pi}{5}$ •2 $x = 6\sin\frac{\pi}{5}t$ $6\sin\frac{\pi}{5}t = 4$ •3•4•4 $\frac{\pi}{5}t = 0.730, 2.41$ $t = 1.16, 3.84$ Zontal and vertical marking.Zontal and vertical marking.Zontal and vertical marking.Observed Responses:Method 1 $v = a\omega\cos\omega t$ •3use second value of t to find v •5 $v = \frac{6\pi}{5}\cos(\frac{\pi}{5}\times3.84)$ •6evaluate and interpret solution•6 $v = -2.81 \text{ms}^{-1}$ •7use second value of t to find v •7 $\omega^2 = (\frac{\pi}{5})^2 (6^2 - 4^2)$ •5use second value of t to find v •3 $v^2 = (\frac{\pi}{5})^2 (6^2 - 4^2)$ •5use second value of t to find v •6 $v = -2.81 \text{ms}^{-1}$ •6evaluate and interpret solution.•6 $v = -2.81 \text{ms}^{-1}$

Commonly Observed Responses:

Question		Generic scheme	Illustrative scheme	Max mark
8.		• ¹ find $\frac{dx}{dt}$	• ¹ $\frac{dx}{dt} = 2t + 4$	4
		• ² find $\frac{dy}{dt}$	• ² $\frac{dy}{dt} = (1-t)^3 - 3t(1-t)^2$	
		• ³ evaluate derivatives when $t = 3$	• ³ $\frac{dx}{dt}(t=3) = 10$ and $\frac{dy}{dt}(t=3) = -44$	
		• ⁴ substitute into appropriate formula and calculate speed	• ⁴ $\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$ $\sqrt{10^2 + (-44)^2} = \sqrt{2036} = 45.1$	
Notes:				
Commo	only Obse	ved Responses:		

Question			Generic scheme	Illustrative scheme	Max mark
9.	(a)		Method 1	Method 1	4
			• ¹ use appropriate formula for time of half flight with substitution	• ¹ $v = u + at \Longrightarrow 0 = v \sin \theta - gt$	
			• ² find expression for total time of flight	• ² $t = \frac{v \sin \theta}{g} \Longrightarrow 2t = \frac{2v \sin \theta}{g}$	
			• ³ find expression for range using total time of flight	• ³ $R = v\cos\theta \times 2t = \frac{v\cos\theta \times 2v\sin\theta}{g}$	
			 ⁴ simplify using double angle formula 	• ⁴ $R = \frac{v^2 \times 2\sin\theta\cos\theta}{g} = \frac{v^2\sin 2\theta}{g}$	
Note	s:				
Com	monly	^v Obse	erved Responses:	I	1
	(a)		Method 2	Method 2	4
			 state horizontal range of flight and use it to give expression for t 	• ¹ $R = v \cos \theta \times t$	
			• ² use appropriate formula with substitution	$s = ut + \frac{1}{2}at^{2}$ $0 = v\sin\theta \times t - \frac{1}{2}gt^{2}$	
			• ³ solve the equation for t	• ³ $0 = t \left(v \sin \theta - \frac{1}{2} g t \right)$ $[t = 0] \text{ or } t = \frac{2v \sin \theta}{g}$	
			 ⁴ substitute for t to give required formula 	• $R = \frac{v\cos\theta \times 2v\sin\theta}{g} = \frac{v^2\sin2\theta}{g}$	
Note	es:		in omission of ()		
• D	o not	penal Obse	ise omission of $t = 0$		
	monity	ODSC	n vea Nesponses.		

Question		า	Generic scheme	Illustrative scheme	Max mark		
9.	(a)		Method 3	Method 3	4		
			 ¹ consider horizontal and vertical motion 	$\ddot{x} = 0 \Longrightarrow \dot{x} = v \cos \theta \Longrightarrow x = vt \cos \theta$ •1 $\ddot{y} = -g \Longrightarrow \dot{y} = -gt + v \sin \theta$ $\Rightarrow y = -\frac{1}{2}gt^2 + vt \sin \theta$			
			• ² set up equation for vertical motion at start and finish	• ² $y = -\frac{1}{2}gt^2 + vt\sin\theta = 0$			
			• ³ solve the equation for t	$0 = t \left(v \sin \theta - \frac{1}{2} g t \right)$ [t = 0] or $t = \frac{2v \sin \theta}{g}$			
			 ⁴ substitute for end value for t to give range formula 	$x = v\cos\theta \times t = \frac{v\cos\theta \times 2v\sin\theta}{g}$ $= \frac{v^2\sin 2\theta}{g}$			
• ³ Do	Notes: • ³ Do not penalise omission of $t = 0$						
Comr	nonly	Obse	rved Responses:				

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark		
9.	(b)	(i)	 ⁵ substitute both angles into range formula ⁶ by substituting for <i>R</i> set up equation in <i>v</i> ⁷ re-arrange and solve for <i>v</i> 	• ⁵ $R = \frac{v^2 \sin 60^\circ}{g}$ $R + 5 = \frac{v^2 \sin 70^\circ}{g}$ • ⁶ $\frac{v^2 \sin 60^\circ}{g} + 5 = \frac{v^2 \sin 70^\circ}{g}$ • ⁷ $\frac{v^2 (\sin 70^\circ - \sin 60^\circ)}{g} = 5$ $v^2 = \frac{5g}{\sin 70^\circ - \sin 60^\circ} [665 \cdot 2]$ $v = 25 \cdot 8 \text{ms}^{-1}$	3		
Note	s:						
Com	monly	v Obse	erved Responses:				
• ⁷ no	t avai	lable	where calculator set in radians				
		(ii)	• ⁸ calculate initial velocity when $\theta = 35^{\circ}$	• ⁸ $\mathbf{v} = \begin{pmatrix} 25 \cdot 8\cos 35^\circ + 7\\ 25 \cdot 8\sin 35^\circ \end{pmatrix} \begin{bmatrix} 28 \cdot 13\\ 14 \cdot 80 \end{bmatrix}$ v = u + at	3		
			• ⁹ calculate time of flight	$0 = 14 \cdot 8 - gt$ $0 = 14 \cdot 8 - gt$ $t = \frac{14 \cdot 8}{g} = 1 \cdot 51$ Total time = 3.02			
			• ¹⁰ calculate range with $ heta$ = 35°	• ¹⁰ 28.13 × 3.02 = 85.0 metres			
Note	s:						
1. ●°	1. \bullet^{8} can be implied in further working and does not have to be explicitly stated						
2. ● ¹⁰	2. \bullet^{10} accept 85m or 84.9m (exact values used throughout)						
Com	commonly Observed Responses:						

Question		Generic scheme	Illustrative scheme	Max mark
Alternative solution 1				
(b)) (ii)	• ⁸ substitute original velocity into range formula for $\theta = 35^{\circ}$	• ⁸ $R = \frac{25 \cdot 8^2 \times \sin 70^\circ}{9 \cdot 8} = 63 \cdot 8 \mathrm{m}$	3
		• ⁹ calculate time of flight	• ⁹ $2v\sin\theta$ $2\times25\cdot8\times\sin35$	
		• ¹⁰ add on extra distance for wind assistance	$t = \frac{1}{g} = \frac{9.8}{9.8} = 0.302$ • ¹⁰ $R = 63.8 + 7 \times 0.302 = 84.9 \text{ m}$	2
Notes:				
Commo	nly Obs	erved Responses:		
Alternat	tive sol	ution 2		
	(ii)	• ⁸ find new horizontal component	• ⁸ $\ddot{x} = 0 \Rightarrow \dot{x} = v \cos \theta + 7$ $\Rightarrow x = vt \cos \theta + 7t = 21.13$	3
		 ⁹ calculate time of flight ¹⁰ calculate range 	•9 $t = \frac{2\nu\sin\theta}{g} = \frac{2\times25\cdot8\times\sin35}{9\cdot8} = 0\cdot302$	2
			• ¹⁰ $R = 21 \cdot 13 \times 3 \cdot 02 + 7 \times 3 \cdot 02 = 85 \cdot 0m$	
Notes:				
Commo	nly Obs	erved Responses:		

Question		on	Generic scheme	Illustrative scheme	Max mark
Alte	rnativ	e solu	ition 3		
9.	(b)	(ii)	• ⁸ calculate resultant velocity	A B B C C $a^{2} = b^{2} + c^{2} - 2bc \cos A$ $a^{2} = b^{2} + c^{2} - 2(25 \cdot 8)(7) \cos 145^{\circ}$ $= 1010 \cdot 5$ $a = 31 \cdot 8 \text{ms}^{-1}$ $\sin 145^{\circ} - \sin C \rightarrow C - \sin^{-1}(0, 126) = 7, 25^{\circ}$	3
			 ⁹ calculate angle ¹⁰ calculate range using formula 	•9 $\frac{\sin^2 \cdot c}{31 \cdot 8} = \frac{\sin^2 c}{7} \Rightarrow C = \sin^{-1}(0.126) = 7.25^{\circ}$ $\theta = 35^{\circ} - 7.25^{\circ} = 27.7^{\circ}$ •10 $R = \frac{v^2 \sin 2\theta}{g} = \frac{31.8^2 \sin(2 \times 27.7)}{9.8} = 85.0 \text{m}$	
Note	es:	<u> </u>			
Com	monly	y Obse	erved Responses:		

Question		on	Generic scheme	Illustrative scheme	Max mark
10.	(a)		Method1: Relative to A		6
			 derive expressions for the mass and centres of mass of the original lamina and the circular hole 	• ¹ Original Lamina: $16\pi m$ (4,0) Circular hole: πm (2,1)	
			• ² derive expressions for the mass and centres of mass of the semi-circular hole	• ² Semi-circular hole: $2\pi m \left(6, \frac{8}{3\pi}\right) [6, 0.849]$	
			• ³ take moments horizontally by equating with centre of mass of remaining shape	$\mathbf{\bullet}^{3}$ $13\pi m \overline{x} = 16\pi m \times 4 - \pi m \times 2 - 2\pi m \times 6$	
			• ⁴ solve this equation to find horizontal value of centre of mass	• $\overline{x} = \frac{50}{13}$ [3.846]	
			• ⁵ take moments vertically	$\bullet^{5}13\pi m\overline{y} = 16\pi m(0) - \pi m \times 1 - 2\pi m \times \frac{8}{3\pi}$	
			 solve this equation to find vertical value of centre of mass 	$\bullet^6 \overline{y} = -0 \cdot 208$	
Note	s:	-		·	
1	•° F	Positic	n does not have to be specified as cool	rdinates as moments were taken from A	l
Com	monly	Obse	erved Responses:		

Question		on	Generic scheme	Illustrative scheme	Max mark
10.	(a)		Method 2: Relative to C		6
			• ¹ derive expressions for the mass and centres of mass of the original lamina and the circular hole	• ¹ Original Lamina: $16\pi m$ (4,0) Circular hole: πm (2,1)	
			• ² derive expressions for the mass and centres of mass of the semi-circular hole	• ² Semi-circular hole: $2\pi m \left(6, \frac{8}{3\pi}\right)$ [6,0.849]	
			• ³ take moments horizontally by equating with centre of mass of remaining shape	• ³ $13\pi m x = 16\pi m \times 0 - \pi m \times -2 - 2\pi m \times 2$	
			• ⁴ solve this equation to find horizontal value of centre of mass	• $\overline{x} = \frac{-2}{13} [-0.154]$	
			• ⁵ take moments vertically	• ⁵ $13\pi m\overline{y} = 16\pi m(0) - \pi m \times 1 - 2\pi m \times \frac{8}{3\pi}$	
			• ⁶ solve this equation to find vertical value of centre of mass And state coordinates relative to A	• ⁶ $\overline{y} = -0.208$ (3.846, -0.208)	

Notes:

Commonly Observed Responses: •¹ •² Alternative presentation of data

				Original $\pi m(4^2) = 16\pi m$	Small Cir $\pi m(4^2) = 1$	cle 6πm	Semicircle $\frac{1}{2}\pi m(2^2) = 2\pi$	Remaining 13πm	
/	Moments from A: \overline{x}		$\begin{pmatrix} 4\\0 \end{pmatrix}$	$\begin{pmatrix} 2\\1 \end{pmatrix}$		$\begin{pmatrix} 6\\ \frac{8}{3\pi} \end{pmatrix}$	$\left(\frac{\overline{x}}{\overline{y}}\right)$		
1	Moments from C: \overline{y}		$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} -2\\ 1 \end{pmatrix}$		$\begin{pmatrix} 2\\ \frac{8}{3\pi} \end{pmatrix}$	$\left(\frac{\overline{x}}{\overline{y}}\right)$		
	(b) • ⁷ interpret rotation			• ⁷ ta	$n\theta = \frac{0.208}{3.846} \theta =$	3·1°	1		
Notes:									
Com	monly	0bse	erved Resp	onses:					

Question		on	Generic scheme	Illustrative scheme	Max mark
11.	(a)		• ¹ calculate the displacement of <i>A</i> and <i>B</i> in 6 minutes	• ¹ $\mathbf{r}_A = 4 \cdot \mathbf{8i} + 1 \cdot \mathbf{4j}$ $\mathbf{r}_B = -0 \cdot \mathbf{8i} + 1 \cdot \mathbf{5j}$	2
			• ² calculate velocity of A and B	• ² $\mathbf{v}_A = \frac{4 \cdot 8}{0 \cdot 1}\mathbf{i} + \frac{1 \cdot 4}{0 \cdot 1}\mathbf{j} = 48\mathbf{i} + 14\mathbf{j}$ $\mathbf{v}_B = \frac{-0 \cdot 8}{0 \cdot 1}\mathbf{i} + \frac{1 \cdot 5}{0 \cdot 1}\mathbf{j} = -8\mathbf{i} + 15\mathbf{j}$	
	(b)	(i)	• ³ express displacement of A and B as functions of time	• ³ $\mathbf{r}_{A} = (12 + 48t)\mathbf{i} + (16 + 14t)\mathbf{j}$ $\mathbf{r}_{B} = (34\cdot 8 - 8t)\mathbf{i} + (1 + 15t)\mathbf{j}$	3
			• ⁴ equate i-components	• ⁴ $1\cdot 2 + 48t = 34\cdot 8 - 8t$ i components equal when $t = 0\cdot 6$ hours	
			• ⁵ equate j -components and form conclusion	• ⁵ $16+14t = 1+15t$ t = 0.6 hours i and j components are equal at t = 0.6 so boats collide	
Note	s:	1		1	
1. Ho	orizon	tal ma	arking can apply at \bullet^4 and \bullet^5 .		
Com	monty			(20)	
		(11)	• ⁶ find the position of collision	• ⁶ $\binom{30}{10}$ or (30,10)	1
Note	s:				
Com	monly	/ Obse	erved Responses:		

Question		Generic scheme	Illustrative scheme	Max mark
Alternativ	ve Solı	ution (relative position vector)		
(b)	(i)	• ³ express displacement of <i>A</i> and <i>B</i> as functions of time	• ³ $\mathbf{r}_A = \begin{pmatrix} 48t + 1 \cdot 2 \\ 14t + 1 \cdot 6 \end{pmatrix}, \mathbf{r}_B = \begin{pmatrix} -8t + 34 \cdot 8 \\ 15t + 1 \end{pmatrix}$	3
		• ⁴ find relative position vector and set vector or either component to zero	• ⁴ $_{A}\mathbf{r}_{B} = \begin{pmatrix} 56t - 33 \cdot 6 \\ -t + 0 \cdot 6 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ or $56t - 33 \cdot 6 = 0$ or $-t + 0 \cdot 6 = 0$	
		• ⁵ find time of collision and form conclusion	• ⁵ $-t + 0.6 = 0 \Rightarrow t = 0.6$ $56t - 33.6 = 0 \Rightarrow t = 0.6$ i and j components are equal at t = 0.6 so boats collide	
	(ii)	• ⁶ find the position of collision	• ⁶ $\binom{30}{10}$ or (30,10)	1
Notes:				
Commoni	y Obse	erved Responses:		
Alternativ	ve solu	ition (parallel vectors)		
(b)	(i)		$v_{A-B} = v_A - v_B$	3
		• ³ expression to indicate method of bringing <i>B</i> to rest with substitution	$ \overset{\bullet^{3}}{=} \begin{pmatrix} 48\\14 \end{pmatrix} - \begin{pmatrix} -8\\15 \end{pmatrix} = \begin{pmatrix} 56\\-1 \end{pmatrix} $	
		• ⁴ expression for A_1B_1	• ⁴ $A_1B_1 = \begin{pmatrix} 34 \cdot 8 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \cdot 2 \\ 1 \cdot 6 \end{pmatrix} = \begin{pmatrix} 33 \cdot 6 \\ -0 \cdot 6 \end{pmatrix}$	
		• ⁵ <i>A</i> and <i>B</i> will collide if v_{A-B} is parallel to A_1B_1	• ⁵ $\frac{3}{5} \binom{56}{-1} = \binom{33 \cdot 6}{-0 \cdot 6} \text{ or } A_1 B_1 = 0 \cdot 6v_{A-B}$ So boats collide	
	(ii)	• ⁶ use $t = 0.6$ to find the position of collision and state as coordinate	• ⁶ $\binom{30}{10}$ or (30,10)	1
Notes:				
Common	y Ubse	ervea Responses:		

Question		on	Generic scheme Illustrative scheme Ma ma	ax ark
12.	(a)		• ¹ use Newton's second law parallel to wire • ² resolve perpendicular to the • ² $R = mg\cos\theta$	4
			cable and combine equations and simplify expression for acceleration $a = g(\sin \theta - \mu \cos \theta) [0.589]$	
			• ³ use appropriate equation of motion with some substitution $\bullet^{3} v^{2} = u^{2} + 2(g(\sin\theta - \mu\cos\theta))s$	
			• ⁴ substitute all values and calculate speed • ⁴ $v^2 = 2^2 + 2(g(\sin 20^\circ - 0.3\cos 20^\circ)) \times 20^\circ$ $v = 5.25 \text{ ms}^{-1}$	0
Note	s:	1		
Com	monly	v Obse	erved Responses:	
Alter	rnativ	e solu	ution (work/energy principle)	
	(a)		$h = 20\sin 20^{\circ} (\approx 6.84)$	4
			• ¹ calculate height and find expression for energy at top • ¹ and $mg \times 20 \sin 20^\circ + \frac{1}{2}m \times 2^2$	
			• ² find expression for energy at bottom and calculate change in energy	
			$W = 0 \cdot 3mg \cos 20^{\circ} \times 20$	
			• ³ calculate work done against friction and use work/energy principle • ³ $W = 20mg \sin 20^\circ + 2m - \frac{1}{2}mv^2$	
			$6mg\cos 20^{\circ}$	
			• ⁴ substitute and solve to find speed • ⁴ = $20mg \sin 20^\circ + 2m - \frac{1}{2}mv^2$	
			$v = 5 \cdot 25 \mathrm{ms}^{-1}$	
Note	s:			
Com	monly	0bse	erved Responses:	

Question		on	Generic scheme	Illustrative scheme	Max mark
12.	(b)		• ⁵ find total initial energy	• ⁵ setting zero PE level at seat $E_K + E_P = \frac{1}{2}mu^2 + 0 = 13 \cdot 8m$	4
			• ⁶ find total final energy	• ⁶ $E_{K} + E_{P} = 0 + mg(r - r\cos\theta)$	
			• ⁷ use conservation of energy to form equation	• ⁷ $13 \cdot 8m = mgr(1 - \cos\theta)$	
			 ⁸ substitute values and calculate angle 	• ⁸ $\cos\theta = 1 - \frac{5 \cdot 25^2}{2 \times 9 \cdot 8 \times 1 \cdot 8}$ $\theta = 77 \cdot 4^\circ$	
Note	s:			1	
Com	monly	0bse	erved Responses:		
Alte	rnativ	e solu	tion (work/energy principle)		
	(b)		• ¹ use conservation of energy	• $\frac{1}{2}mv^2 = mgh$	4
			• ² substitute to find height	$\bullet^2 h = \frac{5 \cdot 25^2}{2 \times 9 \cdot 8} = 1 \cdot 406$	
			• ³ find vertical distance below centre of rotation	• ³ $1 \cdot 8 - 1 \cdot 406 = 0 \cdot 394$	
			• ⁴ calculate angle	• ⁴ $\cos^{-1}\left(\frac{0\cdot 394}{1\cdot 8}\right) = 77\cdot 4^{\circ}$	
Note	s:				
Com	monly	v Ubse	erved Responses:		

Question		Generic scheme	Illustrative scheme	Max mark	
13.		• ¹ differentiate u with respect to x	• ¹ $\frac{du}{dx} = 2x$	6	
		• ² evaluate new limits	• ² $x=0 \Rightarrow u=4, x=\sqrt{5} \Rightarrow u=9$		
		• ³ find new integral	• ³ $\int_{4}^{9} \frac{u-4}{u^{\frac{1}{2}}} du$		
		• ⁴ express in integrable form	• $\int_{4}^{9} \left(u^{\frac{1}{2}} - 4u^{-\frac{1}{2}} \right) du$		
		● ⁵ integrate	• ⁵ $\left[\frac{2}{3}u^{\frac{3}{2}} - 8u^{\frac{1}{2}}\right]_{4}^{9}$		
		• ⁶ evaluate	• ⁶ $\frac{14}{3}$		
Notes:					
1. • ⁵ only $\frac{14}{3}$ or $4\frac{2}{3}$ are acceptable since the exact value is requested.					
2. • ² can be	awa	rded for resubstituting for x instead of	evaluating new limits.		
Commonly	Obse	erved Responses:			

Question		n	Generic scheme	Illustrative scheme	Max mark
14.			• ¹ model EPE in stretched rope	• ¹ EPE = $\frac{1}{2} \frac{\lambda x^2}{l} = 50d^2$	5
			• ² equate potential and elastic potential energy at lowest point	• ² $E_p = mg(10+d)$ = 70×9.8×(10+d) = 50d ²	
			• ³ set up quadratic equation in d	• ³ $6860 + 686d = \frac{1}{2} \times \frac{1000}{10}d^2$ $50d^2 - 686d - 6860 = 0$	
			• ⁴ solve for d	• ⁴ $d = \frac{686 \pm \sqrt{686^2 + 4 \times 50 \times 6860}}{2 \times 50}$ = 20.43 or -6.71	
			 ⁵ select appropriate solution and find height above water 	 ●⁵ total length = 10 + 20·43 = 30·43 height above water 40 - 30·43 = 9·57 m 	
Alternative for •1		1			
			$ullet^1$ calculate work done to stretch d	• ¹ $W = \int_0^d F dx = \int_0^d (\frac{\lambda}{10}x) dx = \frac{1}{2} \frac{\lambda}{10} d^2$	
Note	s:		- 12		
Com	monly	Ubse	rvea Responses:		

Question	Generic scheme	Illustrative scheme	Max mark
Alternative solu	ition (SHM)		
14.	• ¹ calculate speed at point cord becomes tense	$v^{2} = u^{2} + 2as$ • 1 $\Rightarrow v^{2} = 0^{2} + 2 \times 9 \cdot 8 \times 10$ v = 14	5
	• ² calculate equilibrium extension	• ² $\frac{\lambda x_e}{l} = mg \Rightarrow \frac{1000 x_e}{10} = 70g$ $x_e = 0.7g = 6.86$	
	 ³ use Newton's second law to set up equation and calculate ω 	• ³ $70g - \frac{1000(x+0.7g)}{10} = 70\ddot{x}$ $\ddot{x} = -\frac{10}{7}x \Rightarrow \omega = \sqrt{\frac{10}{7}}$	
	• ⁴ calculate amplitude of motion	• $14^2 = \left(\sqrt{\frac{10}{7}}\right)^2 \left(a^2 - (0.7g)^2\right)$ a = 13.574	
	• ⁵ calculate height above water	• ⁵ $40 - (10 + 6 \cdot 86 + 13 \cdot 574)$ = 9 \cdot 57 m	
Notes: Commonly Obse	erved Responses:		

Question	Generic scheme	Illustrative scheme M m	Λax nark	
Alternative so	lution (Newton's Second Law and splitt	ing the variables)		
14.	 apply Newton's Second Law and Hooke's Law 	$mg - \frac{\lambda x}{l} = ma$ • 1 $70g - \frac{1000x}{10} = 70v \frac{dv}{dx}$	5	
	• ² separate variables and integrate	• ² $\int v dv = \int \left(g - \frac{10}{7}x\right) dx$ • ² $\frac{v^2}{2} + c = gx - \frac{5}{7}x^2$		
	• ³ calculate speed at point cord becomes tense and substitute to find constant of integration	$v^{2} = 0^{2} + 2 \times 9 \cdot 8 \times 10 \Rightarrow v = 14$ • ³ $x = 0, v = 14 \Rightarrow c = -98$ $\therefore \frac{v^{2}}{2} - 98 = gx - \frac{5}{7}x^{2}$		
	• ⁴ substitute $v = 0$ and solve quadratic	• ⁴ $5x^2 - 7gx - 686 = 0$ $\Rightarrow x = 20 \cdot 43, x = -6 \cdot 71$		
	• ⁵ select solution and calculate height above water	• ⁵ $40 - 10 - 20 \cdot 43$ = 9 \cdot 57 m		
Notes: Commonly Observed Responses:				

Question		on	Generic scheme	Illustrative scheme	Max mark	
15.	(a)		• ¹ set up auxiliary equation	• ¹ $m^2 + 0.4m + 0.04 = 0$	5	
			• ² solve quadratic equation to give general solution	• ² $(m + 0.2)(m + 0.2) = 0 \Rightarrow m =$ -0.2 repeated $x = Ae^{-0.2t} + Bte^{-0.2t}$		
			• ³ initial condition $x = 1.5$ when $t = 0$	• ³ $A = 1.5$		
			• ⁴ differentiate to use initial condition	• ⁴ $\frac{dx}{dt} = -0 \cdot 2Ae^{-0.2t} + Be^{-0.2t} - 0 \cdot 2Bte^{-0.2t}$		
			• ⁵ substitution to obtain <i>B</i> and particular solution	• ⁵ $-0.5 = -0.3 + B$ B = -0.2 Hence $x = 1.5e^{-0.2t} - 0.2te^{-0.2t}$		
Note	Notes:					
1. • 7 •	1. • ¹ only available for correct quadratic expression equated to zero.					
Com	monly	/ Obse	erved Responses:			
$\bullet^2 x$	• ² $x = Ae^{-0.2t} + Be^{-0.2t}$, leading to $A + B = 1.5$ only • ¹ and • ³ are available.					
• ⁵ $\frac{dx}{dt} = +0.5$ leading to $B = 0.8$						
	(b)		• ⁶ substitute $t = 2$ into expression for x and calculate distance moved.	• ⁶ $x = 1.5e^{-0.4} - 0.4e^{-0.4}$ x = 0.737 distance moved $1.5 - 0.737 = 0.763$	1	
Notes:						
Commonly Observed Responses:						

Question		on	Generic scheme	Illustrative scheme	Max mark	
16.	(a)	(i)	 ¹ sketch graph showing speed increase/decrease of both runners and annotation of meeting after 3 seconds ² sketch complete with relevant annotation 	• ¹ • ² νms^{-1} 12 9 0 3 t seconds	2	
		(ii)	 ³ use equations of motion under constant acceleration to find time for deceleration of P 	s = t = u = 12 $v = 9$ $a = 4v = u + at9 = 12 - 4tt = 0.75$ s	1	
Note	s:					
1. Mu	ust sho	ow v/t	t graph beyond t=3 and a maximum spe	ed for Q of 12ms ⁻¹		
2. Gi ad	2. Graph Q allow variations after t=3s but maximum speed must not exceed 12ms ⁻¹ as constant acceleration is not specified					
Com	monly	v Obse	erved Responses:			
16.	(b)		• ⁴ expression for area under the graph for <i>P</i>	• ⁴ $P: 27 + \frac{1}{2}(2 \cdot 25 + 3) \times 3$	5	
			• ⁵ correct displacement	• ⁵ 34 · 875 metres		
			• ⁶ find displacement for Q in three seconds	• ⁶ $\frac{1}{2} \times 3 \times 9 = 13.5$ metres		
			• ⁷ explain displacements	$\stackrel{\bullet^{7}}{P} \underbrace{\longleftarrow}_{Q 13\cdot 5m}^{\bullet^{7}}$		
			• ⁸ calculate distance	• ⁸ $34 \cdot 875 + 0 \cdot 8 - 13 \cdot 5 = 22 \cdot 175 m$		
Notes:						
Commonly Observed Responses:						

Question	Generic scheme	Illustrative scheme	Max mark		
17.	• ¹ use $F = ma$ with substitution of $\frac{dv}{dt}$ for acceleration	• $m\frac{dv}{dt} = -kv^2$	5		
	• ² equate Impulse with change in Momentum	• ² $I = mv$			
	• ³ separate variables and start integration	• ³ $\int \frac{mdv}{v^2} = -kt + c$			
	• ⁴ use initial conditions with substitution	$t = 0 v = \frac{I}{m}$ $\stackrel{\bullet^{4}}{=} \frac{-m}{v} = -kt - \frac{m^{2}}{I}$			
	• ⁵ complete proof	• ⁵ $\frac{m}{v} = \frac{ktI + m^2}{I}$ $v = \frac{mI}{ktI + m^2}$			
Notes:					
1. Use of $c = \frac{m^2}{I}$ may appear in \bullet^4					
Commonly Observed Responses:					

[END OF MARKING INSTRUCTIONS]