Marking instructions for each question

Q	uestion	Generic scheme	Illustrative scheme	Max mark		
1.		 ¹ use impulse = change in momentum ² calculate final velocity 	• ¹ 4v-4(3i+2j) = (6i + j) • ² v = $\frac{18i+9j}{4} = \frac{9}{2}i + \frac{9}{4}j$ • ³ v = $\sqrt{\left(\frac{9}{2}\right)^2 + \left(\frac{9}{4}\right)^2} = 5.03$	4		
		 ³ calculate magnitude of velocity ⁴ calculate direction of velocity 	• $ \mathbf{v} = \sqrt{(2)^{-1}(4)^{-3}}$ = 3.03 • $\tan^{-1}\left(\frac{9}{4} \div \frac{9}{2}\right) = 26 \cdot 6^{\circ}$			
	Notes: 1. Accept 153·4°					
Com	Commonly Observed Responses:					

Q	uestion	Generic scheme	Illustrative scheme	Max mark
2.	(a)	 •¹ start to use the product rule with one term correct •² complete differentiation 	• $1 \times e^{-3x}$ or $-3xe^{-3x}$ • $e^{-3x} - 3xe^{-3x}$	3
Note	<u></u>	• ³ substitute $x = -1$	$\bullet^3 4e^3$	
note	5.			
Com	monly Ob	served Responses:		
	(b)	 ⁴ start differentiation with evidence of use of quotient rule with denominator and one term of numerator correct ⁵ complete differentiation 	• ⁴ $\frac{3(2t+1)^2 \dots}{((2t+1)^2)^2}$ or $\frac{\dots - 3t(2(2t+1)\times 2)}{((2t+1)^2)^2}$ • ⁵ $\frac{3(2t+1)^2 - 3t(2(2t+1)\times 2)}{((2t+1)^2)^2}$	3
		• ⁶ simplify answer	• ⁶ $\frac{3(1-2t)}{(2t+1)^3}$	
2. •	⁶ accept ⁶ is not av	$\frac{3-6t}{(2t+1)^3}$ vailable for a candidate who produces for served Responses:	urther incorrect simplification.	
Alter	native so	olution for (b) - Product rule	-	
		• ⁴ start differentiation with evidence of use of product rule with one term correct	• ⁴ $3(2t+1)^{-2}$ or $-3t(2(2t+1)^{-3} \times 2)$	
		● ⁵ complete differentiation	• ⁵ $3(2t+1)^{-2} - 3t(2(2t+1)^{-3} \times 2)$ • ⁶ $3(1-2t)$	
		• ⁶ simplify answer	• ⁶ $\frac{3(1-2t)}{(2t+1)^3}$	

Q	uestion	Generic scheme	Illustrative scheme	Max mark
3.		• ¹ integrate both components	•1 $4t + c_1$ and $\frac{t^2}{2} + t + c_2$	4
		 evaluate constant(s) of integration 	• ² $c_1 = c_2 = 0$ as boat starts at origin	
		 ^{•3} calculate displacement after 10 seconds 	• ³ 40i + 60j	
		•4 find distance and state if within range.	•4 72·1 Yes, it is within range	
Note: If cor	-	ntegration are omitted at •1, award •1 b	out •² is unavailable	
Comr	monly Obse	erved Responses:		
4.		 use maximum speed and acceleration in appropriate formulae 	• ¹ 15 = $a\omega$ and 60 = $a\omega^2$	5
		$ullet^2$ state values of a and ω	$\bullet^2 \omega = 4$ $a = \frac{15}{4}$	
		 ³ derive or state equation for velocity at an instant 	• ³ $a\omega\cos\omega t$	
		 ⁴ substitute to give value of velocity 	• ⁴ -2·18	
		• ⁵ interpret velocity	 ⁵ particle is moving in opposite direction to original movement 	
Note : 1. ● ⁵		ble for a positive answer at \bullet^4	1	

Commonly Observed Responses:

Award •³ for
$$x = \frac{15}{4} \sin(4 \times 2) = 3 \cdot 71$$
 and $v^2 = 4^2 \left(\left(\frac{15}{4} \right)^2 - 3 \cdot 71^2 \right)$

Subsequently, •⁴ can only be awarded for selecting the negative value with appropriate justification

Q	Question		Generic scheme		Illustrative scheme	Max mark
5.			• ¹ state auxiliary equation		• $m^2 - 3m + 2 = 0$	5
			• ² solve auxiliary equation and general solution	state	• ² $y = Ae^x + Be^{2x}$	
			• ³ differentiate general solution	n	• ³ $\frac{dy}{dx} = Ae^x + 2Be^{2x}$	
			 ⁴ substitute values into general solution and derivative to ob 2 equations in A and B 		$ 4^{4} = A + B $ 3 = A + 2B	
			• ⁵ solve for A and B and state solution		• ⁵ $y = -e^x + 2e^{2x}$	
1. "	Notes: 1. "=0" must appear for \bullet^1 to be awarded 2. " $y = \dots$ " need not appear at \bullet^2 , but must appear in the final answer for \bullet^5 to be awarded					
Com	monly	Obse	rved Responses:			
6.	(a)		• ¹ take moments about support	• ¹ 10	$g \times 4 + 5g \times 1 - 12g \times 2$	3
			• ² find magnitude of turning effect	• ² 45	g - 24g = 21g	
			• ³ interpret answer	•3 ant	iclockwise	
	(b)		• ⁴ take moments about any point		g(4-x)+5g(1-x) or 0gx+12g(x+2)	3
			 ⁵ equate to moments in opposite direction 	● ⁵ 10	g(4-x)+5g(1-x)=30gx+12g(x+2)	
			• ⁶ calculate required distance	• ⁶ $\frac{21}{57}$	or 0.368	
Note • ² A	es: ccept 2	206		-		
Alter	rnative	solu	tion for (b)			
			• ⁴ calculate total mass and start to take moments about A	•4 57	<i>x</i> =	
			• ⁵ complete moments about A	•5 57.	$x = 5 \times 3 + 12 \times 6 + 30 \times 4$	
			• ⁶ calculate required distance	• ⁶ $x =$	$= 3 \cdot 632 \Longrightarrow 0 \cdot 368$	

Q	Question		Generic scheme	Illustrative scheme	Max mark
7.			• ¹ begin to differentiate log function	$\bullet^1 \frac{1}{(\sec 2t + \tan 2t)} \dots$	4
			• ² differentiate either trig term	• ² $2 \sec 2t \tan 2t$ or $2 \sec^2 2t$	
			• ³ complete differentiation	$\bullet^3 \frac{2 \sec 2t \tan 2t + 2 \sec^2 2t}{(\sec 2t + \tan 2t)}$	
			• ⁴ simplify	• ⁴ $2 \sec 2t$	
	cept -	$\cos 2t$	erved Responses:		
8.			• ¹ set up integral	$\bullet^1 \int 2t \left(2t+1\right)^{\frac{1}{2}} dt$	5
			• ² begin integration by parts	• $\int 2t (2t+1)^{\frac{1}{2}} dt$ • $2t \times \frac{(2t+1)^{\frac{3}{2}}}{\frac{3}{2} \times 2} - \dots$	
			• ³ complete integration and include constant of integration	• ³ $2t \times \frac{(2t+1)^{\frac{3}{2}}}{\frac{3}{2} \times 2} - \frac{2}{3} \times \frac{(2t+1)^{\frac{5}{2}}}{\frac{5}{2} \times 2} + c$	
			• ⁴ determine value of <i>c</i> from initial conditions	$\bullet^4 \ c = \frac{2}{15}$	
			• ⁵ determine value of velocity	• ⁵ $v = 39 \cdot 7$	
fo	lterna or cori	rect li		imits of integration. In this case • ⁴ is a to be awarded	warded

2. ...dt must appear somewhere in the working for \bullet^1 to be awarded

Commonly Observed Responses:

Q	uestion	Generic scheme	Illustrative scheme	Max mark		
9.		• ¹ resolve forces parallel to the plane	• ¹ $F\cos\theta + 25 = mg\sin 40$	5		
		• ² resolve forces perpendicular to the plane	• ² $F\sin\theta$ + 30 = mg cos 40			
		• ³ use equations from • ¹ and • ² to eliminate F	$\bullet^3 \frac{\sin\theta^\circ}{\cos\theta^\circ} = \frac{5g\cos 40 - 30}{5g\sin 40 - 25}$			
		$ullet^4$ solve to find $ heta$	• ⁴ 49·2°			
		• ⁵ substitute value for θ into either equation for <i>F</i> and solve	● ⁵ 9·95			
Note 1. Fo		t 9.94 or 9.96				
Comi	monly Obse	erved Responses:				
10.		• ¹ start to differentiate using product rule	• ¹ $2xe^{2y}$ or $2x^2e^{2y}\frac{dy}{dx}$	4		
		• ² complete differentiation	• ² $3\frac{dy}{dx} + 2xe^{2y} + 2x^2e^{2y}\frac{dy}{dx} = 0$			
		y = 0	• ³ $x = 3$			
		• ⁴ evaluate gradient	• $-\frac{2}{7}$ or -0.286			
Note	Notes:					
Comi	Commonly Observed Responses:					

Q	uestion	Generic scheme	Illustrative scheme	Max mark		
11.		• ¹ use Newton's second law with substitution to set up equation	$\bullet^1 - 0 \cdot 2v^2 = 2v \frac{dv}{dx}$	5.		
		• ² separate variables and set up integration	• ² $\int -0.1 dx = \int \frac{1}{v} dv$			
		• ³ integrate with constant of integration (or use of limits)	$\bullet^3 -0\cdot1x + c = \ln\left v\right $			
		• ⁴ find constant of integration	• ⁴ $c = \ln 5$			
		 ⁵ substitute and rearrange equation for v 				
2. Do 3. Alt	Notes: 1. If c is omitted at \bullet^3 , then \bullet^3 , \bullet^4 and \bullet^5 are not available. 2. Do not withhold \bullet^3 or \bullet^5 for the omission of the modulus sign 3. Alternative method for $\bullet^3 \bullet^4 \bullet^5$ could involve using limits of integration 4. for \bullet^1 accept $-0.2v^2 = 2\frac{dv}{dt}$. All marks are still available for appropriate working.					
Comi	Commonly Observed Responses:					

Question	Generic scheme	Illustrative scheme	Max mark
12. (a)	• ¹ resolve forces vertically	• ¹ $R\cos\theta^\circ + \mu R\sin\theta^\circ = m\mathbf{g}$	5
	• ² apply Newton's 2 nd law for horizontal forces	• ² $R\sin\theta^\circ - \mu R\cos\theta^\circ = \frac{mv^2}{r}$	
	\bullet^3 substitute and eliminate <i>R</i>	• ³ $\frac{\sin\theta^{\circ} - \mu\cos\theta^{\circ}}{\cos\theta^{\circ} + \mu\sin\theta^{\circ}} = \frac{v^2}{gr}$	
	• ⁴ substitute in expression for v and use trig identity for tan θ°	• ⁴ $\frac{\tan\theta^{\circ} - \mu}{1 + \mu \tan\theta^{\circ}} = \frac{1}{100}$	
	$ullet^5$ rearrange to required answer	• ⁵ 100 tan θ° - 100 μ = 1 + μ tan θ° μ tan θ° + 100 μ = 100 tan θ° - 1	
		$\mu = \frac{100 \tan \theta^{\circ} - 1}{\tan \theta^{\circ} + 100}.$	
	ilable for candidates who write down the bserved Responses:	correct expression without justificatio	n
(b)	• ⁶ resolve forces for friction acting down the slope	• $R\cos\theta^{\circ} - \mu R\sin\theta^{\circ} = mg$ $R\sin\theta^{\circ} + \mu R\cos\theta^{\circ} = \frac{mv^2}{r}$	4
	• ⁷ substitute and eliminate R	• ⁷ $\frac{\sin\theta^{\circ} + \mu\cos\theta^{\circ}}{\cos\theta^{\circ} - \mu\sin\theta^{\circ}} = \frac{v^2}{gr}$	
	• ⁸ find maximum speed	• ⁸ $v = 30 \cdot 3$	
	 ⁹ find minimum speed and state conclusion 	• ⁹ 2.8 and motorcyclist will not slip.	
Notes: 1. Accept • ⁷	stated immediately from (a) as understand	ding of slipping up the slope	
Commonly O	bserved Responses:		
(c)	\bullet^{10} state reason with justification	• ¹⁰ eg worn tyres - alter value of coefficient of friction	1
Notes:		1	
1. • ¹⁰ cannot	be awarded for any reference to mass		

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark
13.	(a)		• ¹ resolve perpendicular to the slope	• ¹ $R = mg\cos\theta$	4
			• ² apply Newton's second law parallel to the slope	$\bullet^2 -\mu R - mg\sin\theta = ma$	
			• ³ find expression for acceleration	• ³ $a = -g(\mu\cos\theta + \sin\theta)$	
				$0 = V^{2} + 2(-g(\mu\cos\theta + \sin\theta))s$	
			 ⁴ substitute into equation of motion and complete 	$\int_{0}^{0} s = \frac{V^2}{2g(\mu\cos\theta + \sin\theta)}$	
Note	s:	1			
Com	monly	v Obse	erved Responses:		
	(b)		 ⁵ find work done against friction in terms of given variables 	• ⁵ $W = \mu mg \cos \theta \times \frac{V^2}{2g(\mu \cos \theta + \sin \theta)}$	3
			 ⁶ substitute for Wand start simplification 	• ⁶ $\frac{1}{8} = \frac{\mu \cos \theta}{2(\mu \cos \theta + \sin \theta)}$	
			$ullet^7$ state expression for μ	• ⁷ $\mu = \frac{1}{3} \tan \theta$	
Note	s:	I		I	1
• ⁷ a	ccept	$\mu = \frac{3}{3}$	$\frac{\sin\theta}{\cos\theta}$		
Com	monly	v Obse	erved Responses:		

Question	Generic scheme	Illustrative scheme	Max mark
Alternative solu	itions for 13. (a)		
	• ¹ state force acting down slope	• ¹ $F = mg\sin\theta + \mu R$	
	• ² find work done against friction to travel <i>s</i> metres up slope	• ² $(mg\sin\theta + \mu R)s$	
	• ³ resolve perpendicular to slope	$\mathbf{R} = m\mathbf{g}\cos\theta$	
	and substitute for R	$(mg\sin\theta + \mu mg\cos\theta)s$	
		$\frac{1}{2}mV^2 = m\mathbf{g}(\sin\theta + \mu\cos\theta)s$	
	• ⁴ use work energy principle to find expression for <i>s</i>	$\int_{\Phi^{4}}^{\Phi^{4}} \frac{1}{2}mV^{2} = mg(\sin\theta + \mu\cos\theta)s$ $s = \frac{V^{2}}{2g(\sin\theta + \mu\cos\theta)}$	
	• ¹ find work done against gravity	• ¹ $m\mathbf{g} \times s \sin \theta$	
	• ² find work done against friction	• ² $\mu mg \times s \cos \theta$	
	• ³ use work/energy principle	• ³ $\frac{1}{2}mV^2 = mgs\sin\theta + \mu mgs\cos\theta$	
	• ⁴ find expression for <i>s</i>	• ⁴ $s = \frac{V^2}{2g(\sin\theta + \mu\cos\theta)}$	

Question		n	Generic scheme	Illustrative scheme	Max mark
14.	(a)		• ¹ consider energy at A	$\bullet^1 E_k + E_p = \frac{1}{2}mu^2 + 0$	4
			• ² consider energy at P, and substitute for <i>h</i>	• ² $E_k + E_p = \frac{1}{2}mv^2 + mgh$ = $mgr(1 - \cos\theta)$	
			• ³ use conservation of energy	$\bullet^3 \frac{1}{2}mu^2 = mgr(1 - \cos\theta)$	
			• ⁴ substitute and calculate angle	$ \mathbf{e}^{4} 6 \cdot 125 = 3 \cdot 92(1 - \cos \theta) \\ \theta = 124 \cdot 2^{\circ} $	
Note	s:				
1. 2. 3.	● ¹ an		hay be implied by \bullet^3	nust include $E_k + E_p$ or "energy at A" or	similar
Com	monly	[,] Obse	erved Responses:		
	(b)		• ⁵ state requirements for complete circle	• ⁵ $v > 0$ when angle = 180°	3
			 ⁶ set up inequality with initial kinetic energy greater than final potential energy 	$\bullet^6 \frac{1}{2}mu^2 > 2mgr$	
			• ⁷ solve for u	• ⁷ $u > \sqrt{\frac{8g}{5}}$	
Note	s:			•	
1. ● ⁵	may b	oe imp	olied by • ⁶		
			be awarded for equalities		
	acce	•	—		
4. ● ⁷	do n	ot acc	ept $u \ge 3.96$ or $u \ge \sqrt{\frac{8g}{5}}$		
Com	monly	Obse	erved Responses:		
	(c)		• ⁸ state assumption	• ⁸ ball is of the same radius as tubing or does not spin or ball is smooth.	1
Note	s:				
Com	monly	Obse	erved Responses:		

Q	Question		Generic scheme	Illustrative scheme	Max mark
15.	(a)		 ¹ state condition for maximum height 	• ¹ $v = 0$ stated or implied by • ²	3
			• ² find vertical component of initial velocity and substitute into vertical equation of motion	• ² $0 = u^2 \sin^2 \theta - 2 \times g \times s$	
			• ³ introduce inequality and complete proof	• ³ $\sin\theta < \frac{\sqrt{2 \times g \times 3}}{u}$ $\sin\theta < \frac{\sqrt{6g}}{u}$	
Note		cept	$\sin\theta = \frac{\sqrt{2gs}}{u}$ leading to inequality if fur	ther explanation is given	
Alter	rnative	e solu	tion for (a)		
			• ¹ state expression for height	$e^1 ut\sin\theta - \frac{1}{2}gt^2$	
			• ² state expression for time and start substitution	• ² $t = \frac{u\sin\theta}{g}$ $u\left(\frac{u\sin\theta}{g}\right)\sin\theta - \frac{1}{2}g\left(\frac{u\sin\theta}{g}\right)^2$	
			• ³ introduce inequality and complete proof	• ³ < 3 and working leading to $\sin \theta < \sqrt{\frac{6g}{u}}$	

Question		n	Generic scheme	Illustrative scheme	Max mark		
15.	(b)	(i)	• ⁴ state time of flight	$\bullet^4 \frac{2u\sin\theta}{g}$	5		
			 ⁵ substitute into expression for range 	• ⁵ $\frac{2u^2\sin\theta\cos\theta}{g}$			
			$ullet^6$ obtain expression for $\cos heta$	• ⁶ $\cos\theta = \frac{\sqrt{u^2 - 6g}}{u}$			
			• ⁷ substitute expressions for $\sin \theta$ and $\cos \theta$ into expression for range	• ⁷ $\frac{2u^2}{g} \times \frac{\sqrt{6g}}{u} \times \frac{\sqrt{u^2 - 6g}}{u}$			
			• ⁸ simplify and complete	• ⁸ valid working leading to $R = 12 \sqrt{\frac{u^2 - 6g}{6g}}$			
Alternative solution for (b) (i)							
			 ⁴ substitute into 2 equations of motion 	• ⁴ $3 = \frac{(u+v)t}{2}$ $6 = u\sin\theta \times t$			
			• ⁵ combine equations to eliminate $\sin \theta$	$\bullet^5 \ \frac{6}{ut} = \frac{\sqrt{6g}}{u}$			
			 ⁶ find expression for total time of flight 	• ⁶ Total time of flight = $\frac{12}{\sqrt{6g}}$			
			• ⁷ find expression for horizontal component of velocity	• ⁷ $u\cos\theta = \sqrt{u^2(1-\sin^2\theta)}$ $u\cos\theta = \sqrt{u^2-6g}$			
			 ⁸ use expression for range and simplify as required 	$u\cos\theta = \sqrt{u^2 - 6g}$ • ⁸ Range = $\frac{12}{\sqrt{6g}}u\cos\theta$			
				Range = $\frac{12\sqrt{u^2 - 6g}}{\sqrt{6g}} = 12\sqrt{\frac{u^2 - 6g}{6g}}$			
		(ii)	• ⁹ state constraint	•9 $u > \sqrt{6g}$	1		
Notes Accep		√6g ,	$u^2 \ge 6g \text{ or } u^2 > 6g$				

Commonly Observed Responses:

Q	Question		Generic scheme	Illustrative scheme	Max mark
16.	(a)		• ¹ calculate the angle for direct route	• ¹ $\tan \theta^{\circ} = \frac{800}{250}$ $\theta^{\circ} = 72 \cdot 6^{\circ}$	4
				$v_{r} = 2$ $v_{b} = 4$ $x^{\circ} \partial^{\circ}$ 250 800	
			• ² use sine rule	$\bullet^2 \frac{\sin x^\circ}{2} = \frac{\sin 72 \cdot 6^\circ}{4}$	
			• ³ determine angle inside velocity components triangle	• ³ $x = 28 \cdot 5$	
			• ⁴ interpret solution	• ⁴ angle to bank is $101 \cdot 1^{\circ}$ or $78 \cdot 9^{\circ}$	
	monly	Obse	or 78·8° erved Responses:		
	(b)	(i)	 ⁵calculate resultant speed before slowing 	• ⁵ $v_{\text{resultant}} = 4 \cdot 11$	3
			 ⁶ calculate distance from A of rower after 60 seconds 	• ⁶ 247	
			 ⁷calculate remaining distance after slowing 	• ⁷ 591	
Alter	nativ	e solu	ition for (b) (i)		
			 ⁵set up distance triangle and use sine/cosine rule 	• ⁵ $\frac{x}{\sin 78 \cdot 8} = \frac{120}{\sin 28 \cdot 5} = \frac{240}{\sin 72 \cdot 6}$ or $x^2 = 120^2 + 240^2 - 2 \times 120 \times 240 \times \cos 78 \cdot 8$	
			• ⁶ calculate full or partial distance	• ⁶ 247 after 1 minute or 838 to B	
			• ⁷ calculate remaining distance	• ⁷ 591	
Note Acce	s: pt 592	for •	7		-
Com	monly	Obse	erved Responses:		

Question			Generic scheme	Illustrative scheme	Max mark
16.	(b)	(ii)	• ⁸ calculate the new angle with the river bank or angle marked <i>x</i>	• ⁸ 67·8° or 112·2° or 39·5	3
			 ⁹ calculate resultant velocity after slowing 	• 9 $v = 2.91 \text{ms}^{-1}$	
			• ¹⁰ calculate remaining and total times	• ¹⁰ t = 203 seconds, Total time = 263 seconds	
Note	es:				
Com	monly	y Obse	erved Responses:		
17.	(a)		• ¹ recognise form of integral and integrate correctly	• ¹ $\tan(e^t) + c$	1
Note cons		f inte	gration not required		
Com	monly	/ Obse	erved Responses:		
	(b)		• ² recognise expression for velocity	$\bullet^2 v = e^t \sec^2(e^t)$	2
			• ³ explain why original function cannot ever equal zero	• ³ neither $\sec(e^t)$ nor e^t can ever	
				equal zero, so product can never be zero and hence particle never at rest	
Note	es:	1	1	1	J
Com	monly	/ Obse	erved Responses:		

[END OF MARKING INSTRUCTIONS]