

Υ	Q	Moments and Centre of Mass	
2024	7	A uniform beam AB, of length 6 metres and mass 45 kg, is placed on two supports at points P and Q, where AP is 1 metre and QB is 2 metres.	
		A 2.5 m 1 m p 2 m B	
		When a child of mass 22 kg stands on the beam at a distance of 2.5 metres from A, the beam rests horizontally in equilibrium, as shown in the diagram. Calculate the magnitude of the reaction force at Q.	3
2019	6	A uniform rod AB, of length 8 metres and mass 30 kg, is placed on a support at its centre.	_
		A P Q B	
		Masses of 10 kg, 5 kg and 12 kg are placed at the points A, P and Q respectively, as shown in the diagram, where AP is 3 metres and QB is 2 metres.	
		(a) Calculate the magnitude and direction of the turning effect on the rod about its support.	3
		The support is repositioned so that the rod is in equilibrium.	
		(b) Determine how far the support was moved from its original position.	3
2018	10	A uniform circular lamina with diameter AB = 8 cm and centre C has mass per unit area m. Two holes have been made in the lamina as shown in the diagram.	
		A C B	
		The circular hole has radius 1 cm and touches the line AB at a point 2 cm from A. The other hole is a semi-circle with diameter BC.	
		(a) Find the position of the centre of mass of the lamina relative to the point A.	6
		(b) The lamina is freely suspended from the point A. Calculate the angle that the line AB makes with the downward vertical.	1

