Υ	Q	Work, Energy and Power	
24	10	An object slides from rest down a smooth ramp which forms a circular arc of radius 1.5 metres.	
		1.5 m	
		The object travels a distance of 2.1 metres to reach the bottom of the ramp.	
		Determine the speed of the object after travelling this distance.	4
24	16	A motorised sledge of mass m kg is travelling along a rough horizontal track with instantaneous acceleration a m s ⁻² . The engine is working at a constant rate of P watts and the coefficient of friction is 0.1.	
		(a) When the instantaneous velocity of the sledge is $V\mathrm{m}\mathrm{s}^{-1}$, show that	
		P = mV(a + 0.1g)	2
		The sledge now ascends a slope of 30° to the horizontal with the same coefficient of friction.	
		The engine now works at a rate of $3P$ watts. At a particular instant, both the instantaneous acceleration a m s ⁻² and the instantaneous velocity V m s ⁻¹ have the same values as they did when the sledge was travelling on the horizontal track.	
		(b) Calculate the acceleration at this instant.	4
23	11	A force $\mathbf{F} = 0.3\mathbf{i} + 0.5\mathbf{j}$ moves a body between two points on the x y plane with coordinates (16, 4) and (12, 20).	
		The force is given in newtons, and distances are given in metres.	
		(a) Calculate the work done by the force ${\bf F}$.	2
		(b) Hence find the component of the force in the direction of the displacement.	2
23	15	A bullet of mass m kg is fired at a block of wood of mass M kg which hangs vertically and at rest at the end of a light inextensible string.	
		The bullet enters the block horizontally while travelling at a speed of $u {\rm m s^{-1}}$, and becomes embedded in the block.	
		The block then swings until it reaches a height \boldsymbol{h} metres above its original position.	
		Show that $h = \frac{1}{2g} \left(\frac{mu}{M+m} \right)^2$.	5

22	10	A particle of mass 0.1 kg is suspended from a fixed point O by a light inextensible rod of length 30 cm.	
		The rod is rotating in a vertical circle with diameter AB and makes an angle $\boldsymbol{\theta}$ with OB.	
		The particle has a speed of 1.2m s^{-1} at A.	
		Α θ 30 cm	
		(a) Use conservation of energy to find the speed of the particle at B.	2
		(b) Find the tension in the rod when the particle is at A and interpret your answer.	3
		(c) Find the size of the angle $\boldsymbol{\theta}$ when the tension in the rod is zero.	5
22	14	A particle of mass 5 kg is initially at rest. It is projected horizontally from an origin, O , along the positive direction of the x -axis.	
		The particle moves with variable acceleration given by $a = (15 + x - 2x^2) \text{ms}^{-2}$, $x \ge 0$ where x is measured in metres.	
		(a) Calculate the displacement from O at which the particle reaches its maximum speed.	2
		(b) (i) Calculate the work done in reaching this maximum speed.	3
		(ii) Hence, or otherwise, calculate the maximum speed.	2
22	16	A particle of mass 0.1 kg is launched at an acute angle to the horizontal, from the origin, with a kinetic energy of 20 joules. It moves in a vertical x - y plane under the influence of gravity and there is no resistance to motion.	·
		(a) Find the speed of the particle when it is at a height of 10 metres.	2
		(b) Find the height of the particle when it has a velocity of $\binom{4}{5}$ m s ⁻¹ .	2
		(c) Determine the kinetic energy of the particle at its maximum height.	1
19	13	A body of mass m kilograms is projected with speed V m s ⁻¹ up a rough plane inclined at an angle θ to the horizontal.	
		The body comes to rest after travelling a distance of \boldsymbol{s} metres up the slope.	
		The coefficient of friction between the body and the slope is μ .	
		(a) Show that $s = \frac{V^2}{2g(\mu\cos\theta + \sin\theta)}$.	4
		(b) Given that the work done against friction is equal to $\frac{1}{8}mV^2$ joules, find an expression for μ in terms of θ .	3

19	14	A vertical semicircle of radius 40 cm is formed from a length of smooth pipe as shown in the diagram. A ball is projected with a speed of $3\cdot 5\mathrm{ms^{-1}}$ from A, the bottom of the semicircle.	
		A C 40 cm 3.5 ms ⁻¹	
		The centre of the circular path is the point C and the ball comes to instantaneous rest at a point P.	
		(a) Find the size of angle PCA.	4
		The ball is projected from A again with an initial speed of \boldsymbol{u} metres per second.	
		(b) Determine the restriction on \boldsymbol{u} required for the ball to exit at the top of the pipe.	3
		(c) Given that the ball acts as a particle, state another assumption that has been made about the ball in your solution.	1
17	9	A body of mass 20 kg is moving along a rough horizontal surface with speed $12\mathrm{ms^{-1}}$. As it passes through a point P, a horizontal force $F = \left(249 - 50\sqrt{x}\right)$ newtons is applied, where x metres is the displacement of the body from P.	
		Given that the coefficient of friction between the body and the surface is 0.25 :	
		(a) find the work done on the body in the first 10 metres of its motion from P	4
		(b) find the speed of the body after travelling 10 metres from P.	2
16	3	A constant force $F = (2i+3j)N$ acts on a particle as it moves in a straight line from point A to point B with position vectors $(-3i+j)$ metres and $(6i+4j)$ metres respectively.	
		Calculate the work done by the force.	3
16	7	An object of mass 9 kg starts from rest at an origin and moves in a straight line so that its acceleration in m s ⁻² is given as $a = 4 - \sqrt{t}$, where t is the time in seconds.	
		Calculate its maximum speed and hence the increase in kinetic energy.	4
16 Sp	3	A cyclist climbs a hill of length 2-4 km and constant gradient 1:25 in 12 minutes. When cycling at a constant speed of v m s ⁻¹ , the external resistances to motion are $(10.5+0.4v^2)$ N.	
		Given that the total mass of the cyclist and bike is 66 kg, calculate the power produced by the cyclist.	4
16 Sp	8	A stone of mass 0.25kg moves along a smooth horizontal surface. It passes a fixed point O with a velocity of $3 \text{im} \text{s}^{-1}$. When it is at a distance x metres from O, a force of magnitude $(2 \sin x + 5) \text{i} \text{N}$ acts on it along the line of movement.	
		(a) Calculate the work done by the force in moving the stone 3 metres beyond O.	2
		(b) Find the speed of the stone at this point.	2