

Marks

ONLY candidates doing the course Mathematics 1, 2 and Mechanics 1 should attempt this Section.

Answer all the questions.

Answer these questions in a separate answer book, showing clearly the section chosen.

Where appropriate, candidates should take the magnitude of the acceleration due to gravity as 9.8 m s⁻².

- **E1.** A gun is located at one end of a horizontal firing range. A shell is fired down the range at an angle of projection of 45° to the horizontal. After 5 seconds the shell has reached the highest point on its trajectory.
 - (a) Calculate the speed of projection of the shell from the gun.

2

(b) Find the horizontal range of the shell.

2

- **E2.** As a set of traffic lights changes to green, a car accelerates uniformly from rest along a straight horizontal road at $a \text{ m s}^{-2}$. At the same instant, a lorry, travelling at $U \text{ m s}^{-1}$ with constant acceleration $\frac{1}{2}a \text{ m s}^{-2}$, overtakes the car.
 - (a) Show that the car and lorry draw level again after $\frac{4U}{a}$ seconds.

4

(b) Find an expression, in terms of U and a, for the distance travelled by the car when it draws level with the lorry.

1

E3. A box of mass $2 \, \text{kg}$ is pulled at a constant speed up a plane inclined at 30° to the horizontal by a force of magnitude P newtons. The force is acting in the direction making an angle of 30° to the line of greatest slope of the plane, as shown. The coefficient of friction between the box and the inclined plane is $\frac{1}{2}$.

(a) By resolving perpendicular to the plane, show that the magnitude of the frictional force acting parallel to the inclined plane is

$$\frac{1}{4}(2\sqrt{3}g-P)$$
 newtons,

where $g \text{ m s}^{-2}$ is the magnitude of the acceleration due to gravity.

3

(b) Calculate the magnitude of the force P.

3

2

2

4

5

E4. A box of mass m kilograms is suspended from the ceiling of a lift by means of two light inextensible strings, AC and BC, of differing lengths, as shown below. The strings are attached to the box at the point C and angles CAB and ABC are 30° and 60° respectively.

The lift has a steady acceleration, vertically upwards, of magnitude $a~{\rm m\,s^{-2}}$, during which the tensions in the strings AC and BC are T_1 and T_2 newtons respectively.

(a) Show that $T_2 > T_1$.

(b) Find an expression for T_2 in terms of m, a and g, where g m s⁻² is the magnitude of the acceleration due to gravity.

E5. (a) John strikes a stationary ice puck A from the origin with initial velocity $10\,\mathbf{i}\,\mathrm{m\,s^{-1}}$ where \mathbf{i} is a unit vector. The puck accelerates at $-\frac{2}{5}t\mathbf{i}\,\mathrm{m\,s^{-2}}$, where t seconds is the time of travel from the moment the puck is hit. Show that the position of the puck at the time t is

$$\mathbf{r}_A(t) = \frac{1}{15}t(150 - t^2)\mathbf{i}.$$

(b) At the same time as John strikes puck A, Julia projects a second ice puck B across the ice. Referred to the same origin, the position vector of B at time t is $\mathbf{r}_B(t) = \frac{1}{15} (45 + 75t - t^3) \mathbf{i} + 4 \mathbf{j},$

where j is a unit vector perpendicular to i.

- (i) Find the distance of puck B from the origin when it comes to rest.
- (ii) Determine the position of puck A relative to puck B and find the minimum distance between the ice pucks.

 $[END\ OF\ SECTION\ E]$ $[END\ OF\ QUESTION\ PAPER]$