Homework 19

1)	An object of mass 15kg is placed on a rough surface inclined at an angle of 40° to horizontal.	the
	A force of magnitude 30 newtons is applied horizontally, and this is just enough to prethe object sliding down the slope.	vent
	a) Calculate the value of the coefficient of friction.	4
	This 30 newton force is then removed, and the object slides down the slope.	
	b) Calculate the speed of the object after it has travelled a distance of 3 metres down slope.	the 3
2)	An object moves with simple harmonic motion about a fixed point O.	
	When it has moved 30 cm from O the object has a speed of 5ms ⁻¹ . The period of the mo is 1.5 seconds.	tion
	a) Determine the amplitude of the motion.	3
	b) Calculate the maximum speed of the object.	1
3)	Use integration by parts to determine the exact value of	
	$\int_{0}^{\pi/4} e^{4x} \sin 2x dx$	7

- 4) An object of mass 5kg falls from rest under gravity. As the object falls it experiences a resistive force of magnitude kv², where k is a constant and v is the speed in ms⁻¹.
- a) Given that the maximum speed of the object is 14ms⁻¹, determine the value of k. 2
- b) Set up a differential equation and show that when the object has fallen a distance of x metres the velocity v^2 is given by

$$v^2 = 20g(1 - e^{-0.1x})$$
.