Homework 21

1) Use the substitution u = x + 1 to obtain $\int \frac{x^2 + 2}{(x+1)^2} dx$.

- A rubber ball of mass mkg falls vertically into a tank of water. When the ball is x metres below the surface of the water and moving downwards with speed v m s⁻¹, the water exerts a resistive force of magnitude 2mv² newtons and an upward buoyancy force of magnitude three times the weight of the ball
 - (a) Show that the downward motion of the ball can be modelled by the differential equation

$$v\frac{dv}{dx} = -2(v^2 + g). 2$$

(b) The ball enters the water with speed U m s⁻¹. By solving the equation in (a), show that

$$v^2 + g = (U^2 + g)e^{-4x}. 5$$

(c) In the case when U = 4.9, calculate, to the nearest centimetre, the greatest depth below the surface of the water reached by the ball. 3) The motion of a spring can be modelled by the differential equation,

$$9\frac{d^2x}{dt^2} + 12\frac{dx}{dt} + 4x = 0$$

When
$$t = 0$$
, $x = 6$ and $\frac{dx}{dt} = 2$.

Determine the particular solution of this differential equation. 6

4) An object of mass $0 \cdot 2kg$ is attached to the end of a piece of string of length 15cm.

The object hangs vertically and then is given a push with an initial speed of 1ms⁻¹.

Determine the speed of the object at the point when the string goes slack. **7**