TEST A

All questions should be attempted

- 1. Triangle ABC has vertices A(-4,3), B(2, 1) and C(-3, -4)
 - (a) Find the equation of the perpendicular bisector of AB.
 - (b) Establish the equation of the median through C.
 - (c) From your answers to (a) and (b), what can you say about $C_{(-3,-4)}$ triangle ABC, giving a reason for your answer?

2. Given that
$$f(x) = \frac{x^3 - 5}{\sqrt{x}}$$
, $x > 0$, evaluate $f'(4)$

3. A sequence of numbers is defined by the recurrence relation $U_{n+1} = aU_n - 5$, where *a* is a constant.

- (a) Given that $U_0 = 30$, show that, in terms of *a*, $U_2 = 30a^2 5a 5$ (2)
- (b) Hence find a, where a > 0, given that $U_2 = 0$. (2)
- (c) Establish the limit of this sequence as $n \to \infty$. (2)
- 4. The diagram shows part of the graph of $y = k(a^{-x})$.
 - (a) State the value of k.
 - (b) By considering point P, establish the value of a, where a > 0.

5. The diagram below shows part of the graph of y = h(x). The function has stationary points at (0, -3) and (6, 4).

(2)

(4)

Sketch the graph of the derived function	y = h'(x) .	(3)
--	-------------	-----

- 6. A curve has as its equation $y = 8x^3 2x^4$.
 - (a) Find the points at which this curve cuts the x and y axes. (2)
 - (b) Establish the coordinates and nature of the stationary point(s) of this curve.(7)
 - (c) Sketch the graph of $y = 8x^3 2x^4$ showing clearly the points found in (a) and (b) above. (2)

7. The function
$$g(x) = \frac{x-8}{x}$$
 is defined on a suitable domain.

(a) Evaluate
$$g(g(4))$$
. (1)

(b) Given that
$$k(x) = g(g(x))$$
, show that $k(x) = \frac{-7x - 8}{x - 8}$. (2)

(c) For what value of x is
$$k(x)$$
 undefined? (1)

8. (a) A function is given as $f(x) = \sin 3x + \cos^2 x$.

By finding the rate of change of this function when $x = \frac{\pi}{2}$, make a statement about the function at this point. (5)

(b) A function, defined on a suitable domain is given as

$$f(x) = \frac{3}{(1+3x)^2}$$
, find $f'(1)$ (5)

SET B

Marking Scheme - UNIT 1

	Give 1 mark for each •	Illustration(s) for awarding each mark
1(a)	ans: $y = 3x + 5$ (4 mar)	xs)
	 ¹ knows to find midpoint ² finds gradient of AB ³ finds perpendicular gradient ⁴ substitutes in y - b = m(x - a) 	• Midpoint of AB is (-1, 2) • $m_{AB} = -\frac{1}{3}$ • $m_{PERP} = 3$ • $y - 2 = 3(x + 1)$
(b)	ans: $y = 3x + 5$ (2 mark	κs)
	 finds gradient of median substitutes in equation 	• ¹ $m_{\text{median}} = 3$ • ² $y - 2 = 3(x + 1)$ (or equivalent)
(c)	ans: ABC is isosceles with reason (2 mar	<s)< th=""></s)<>
	 identifies type of triangle valid reason 	 triangle ABC is isosceles the median is also the perp. bisector
2	ans: $20\frac{5}{16}$ (4 mar)	<s)< th=""></s)<>
	 ¹ prepare to differentiate ² differentiates 	• $x^{\frac{5}{2}} - 5x^{-\frac{1}{2}}$ • $\frac{5}{2}x^{\frac{3}{2}} + \frac{5}{2}x^{-\frac{3}{2}}$
	\bullet^3 substitutes	• ³ $\frac{5}{2}(4)^{\frac{3}{2}} + \frac{5}{2(4)^{\frac{3}{2}}}$ (or equivalent)
	\bullet^4 evaluates to answer	• $4 20\frac{5}{16}$
3 (a)	ans: proof (2 mar	(()
	 finds expression for U₁ substitutes and rearranges to answer 	• 1 30a - 5 • 2 a(30a - 5) - 5
(b)	ans: $a = \frac{1}{2}$ (2 mar)	<s)< th=""></s)<>
	 equates to 0 and factorises solves quadratic and discards 	• ¹ $30a^2 - 5a - 5 = 0; 5(3a + 1)(2a - 1) = 0.$ • ² $a = -\frac{1}{3}$ or $a = \frac{1}{2}$
(c)	ans: -10 (2 mar	(s)
	 ¹ knows how to find limit ² answer 	• $L = \frac{-5}{1 - \frac{1}{2}}$ • $2 - 10$

	Give 1 mark for each •	Illustration(s) for awarding each mark
4(a)	ans: $k = 8$ (1)	mark)
(h)	• answer $a_1 = 2$ (3)	• $8 = k(a^0)$, $8 = k(1)$ \therefore $k = 8$
	• ¹ for substituting in point & k • ² simplifying • ³ answer	• 1 $y = 8(a^{-x}) \Rightarrow 8(a^{-(-2)}) = 32$ • 2 $8a^2 = 32$ • 3 $a^2 = 4$ \therefore $a = 2$
5	ans: graph drawn (3 i	marks)
	 ¹ intercepts with <i>x</i>-axis correct ² parabola drawn ³ correct parabola drawn 	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
6(a)	ans: (0, 0), (4, 0); (0, 0) (2 m	marks)
	 ¹ correct <i>x</i>-intercepts ² correct <i>y</i>-intercept 	• $8x^3 - 2x^4 = 0; 2x^3(4 - x) = 0; (0,0), (4,0)$ • $(0,0)$
(b)	ans: (0, 0) pt.of inflection; (3, 54) maximum. (7 n	marks)
	 ¹ knows to differentiate ² differentiates correctly ³ knows dy/dx = 0 ⁴ finds <i>x</i>-coordinates of SPs ⁵ finds <i>y</i>-coordinates of SPs ⁶ uses relevant method ⁷ establishes nature of stationary poin 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
(c)	ans: graph drawn (2 m	marks) $y (3, 54)$
	 ¹ shape of graph correct ² relevant points marked 	\bullet^1 \bullet^2 \bullet^2 \bullet^2 \bullet^2 \bullet^2
7(a)	ans: 9 (1	l mark)
	• ¹ knows how to evaluate	\bullet^1 9
(b)	ans: proof (2)	marks) $x-8$ o
	• ¹ substitutes correctly	• ¹ $g(g(x)) = \frac{x}{\frac{x-8}{x-8}}$
	\bullet^2 rearranges to answer	• ² any relevant method
(c)	ans: $x = 8$ (1	l mark)

 \bullet^1 answer • x = 8

8(a) ans: function is stationary (5 marks)

- \bullet^1 knows to differentiate
- differentiates 1st term correctly
 differentiates 2nd term correctly
- •⁴ knows to substitute $\frac{\pi}{2}$ and evaluate
- •⁵ correct statement

(b) ans:
$$-\frac{9}{32}$$
 (5 marks)

- \bullet^1 prepares to differentiate
- •² starts to differentiate
- •3 completes differentiating
- •⁴ substitutes into derivative
- •5 evaluates

- •¹ f'(x).....
- •² $3\cos 3x$
- •³ $2\cos x \sin x$
- •⁴ $3\cos 3(\frac{\pi}{2}) 2\cos \frac{\pi}{2}\sin \frac{\pi}{2}$
- function is stationary when $x = \frac{\pi}{2}$ •⁵
- $f(x) = 3(1+3x)^{-2}$ •² $f'(x) = -6(1+3x)^{-3}....$ •³ ×3 = $\frac{-18}{(1+3x)^3}$

•⁴
$$f'(1) = \frac{-18}{(1+3(1))^3}$$

•⁵
$$=\frac{-18}{64}=-\frac{9}{32}$$

Total: 50 marks