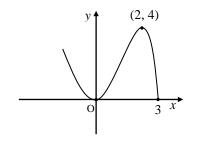
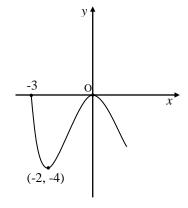
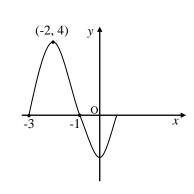

In this section the correct answer to each question is given by one of the alternatives A, B, C or D. Indicate the correct answer by writing A, B, C or D opposite the number of the question. Rough working may be done on the paper provided. 2 marks will be given for each correct answer.


- **1.** If A is the point (-5, -2) and B is the point (-2, 4) then the gradient of AB is
 - **A** $-\frac{7}{2}$ **B** $\frac{1}{2}$ **C** 0
 - **D** 2
- 2. The derivative of $\frac{1}{2x^3}$ is
 - $\mathbf{A} \qquad \frac{1}{6x^2}$
 - $\mathbf{B} \qquad -\frac{3}{2x^4}$ $\mathbf{C} \qquad -6x^2$


$$\mathbf{D} \qquad -\frac{3}{2x^2}$$

- 3. The limit of the sequence defined by the recurrence relation $U_{n+1} = 0 \cdot 25U_n + 12$ is
 - **A** -16
 - **B** 9.6
 - **C** 16
 - **D** 48
- 4. The rate of change of the function $f(x) = 3x^2$ when x = 3 is
 - **A** 3
 - **B** 18
 - C 27
 - **D** 54

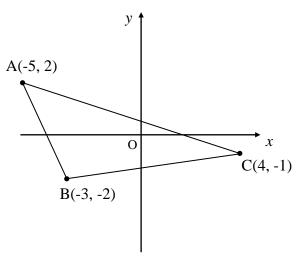
5. Which graph is most likely to be that of the function $f(x) = x^2(x+3)$?



A

B

С



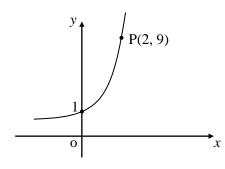
TEST B

Section B ALL QUESTIONS SHOULD BE ATTEMPTED

In this section credit will be given for all correct working.

6. In the diagram A, B and C are the points (-5, 2), (-3, -2) and (4, -1) respectively.

(a)	Find the equation of the line through C parallel to the line AB.	3
(b)	Find the equation of the line perpendicular to BC which passes through the point A.	3
(c)	Find the coordinates of T, the point of intersection of these two lines.	4
Two f	unctions are defined on suitable domains and are given as	
	f(x) = 3 - x and $g(x) = x - 3$.	
(a)	Find an expression, in its simplest form, for $g(f(x))$	2
(b)	Show that $g(f(x)) - f(g(x)) = -6$	2
A recu	irrence relation is defined as $U_{n+1} = aU_n + b$, where a and b are constants.	
(a)	Given that $U_2 = 14$, $U_3 = 9 \cdot 2$ and $U_4 = 5 \cdot 36$, find the values of the constants <i>a</i> and <i>b</i> .	3
(b)	Hence explain why this recurrence relation has a limit.	1
(c)	Establish the value of U_{1} .	2


7.

8.

9. Find the equation of the tangent to the curve $y = x^3 - 3x$ at the point where x = 2. 5

10. Express the function
$$f(x) = 3x^2 - 6x + 11$$
 in the form $p(x-q)^2 + r$. 3

- 11. (a) The point (125, k) lies on the graph of $y = \log_5 x$. Find the value of k. 1
 - (b) The diagram show part of the graph of $y = a^x$. State the value of *a*.

1

4

12. Find the gradient of the tangent to the curve with equation $y = 2\cos 3x - \sin^2 x$ at the point with *x*-coordinate $\frac{\pi}{2}$.

END OF QUESTION PAPER

	Give 1 mark for each •	Illustration(s) for awarding each mark
1	D	
2	В	Award 2 marks for each
3	С	Award 2 marks for each correct answer
4	В	10 marks
5	Α	
6(a)	ans: $y + 2x = 7$ (3 marks)	
	• ¹ knows to find gradient of AB	• $m_{AB} = \frac{y_2 - y_1}{x_2 - x_1}$
	• ² finds gradient	• ² $m_{AB} = \frac{-2-2}{-3+5} = -2$
	\bullet^3 substitutes values in equation	• $y + 1 = -2(x - 4)$
(b)	ans: $y + 7x = -33$ (3 marks)	
	• ¹ finds gradient of BC	• $m_{\rm BC} = \frac{-1+2}{4+3} = \frac{1}{7}$
	 takes perpendicular gradient substitutes values in equation 	• ² $m_{\text{PERP}} = -7$ • ³ $y - 2 = -7(x + 5)$
(c)	ans: (-8, 23) (4 marks)	
	 ¹ knows to use simultaneous equations ² finds value for x ³ finds value for y ⁴ states coordinates 	• vidence • $x = -8$ • $y = 23$ • (-8, 23)
7(a)	ans: -x (2 marks)	
	 ¹ substitutes ² simplifies 	• $g(3-x)$ • $3-x-3=-x$
(b)	ans: proof (2 marks)	
	 finds expression for f(g(x)) simplifies to answer 	• $3-(x-3) = 3-x-3 = 6-x$ • $-x-(6-x) = -6$

	Give 1 mark for each •		Illustration(s) for awarding each mark
8 (a)	ans: $a = 0.8$; $b = -2$	(3marks)	
	\bullet^1 forms a system of equations		• 1 9·2 = 14 <i>a</i> + <i>b</i> ; 5·36 = 9·2 <i>a</i> + <i>b</i>
	• ² finds value for a • ³ finds value for b		$ \begin{aligned} \bullet^2 & a = 0.8 \\ \bullet^3 & b = -2 \end{aligned} $
	• ³ finds value for b		$\bullet^{a} b = -2$
(b)	ans: $-1 < 0.8 < 1$	(1 mark)	
	• ¹ states condition for limit		• 1 -1 < 0.8 < 1
(c)	ans: 20	(2 marks)	
	• ¹ substitutes for U_2		• ¹ $U_2 = 0.8 U_1 - 2; 14 = 0.8 U_1 - 2$
	• ² solves for U_1		• ² $0.8U_1 = 16; U_1 = 20$
9	ans: $y = 9x - 16$	(5 marks)	
	\bullet^1 knows to differentiate		• $\frac{dy}{dx} =$
	\bullet^2 finds derivative		$ \begin{array}{c} dx \\ \bullet^2 3x^2 - 3 \end{array} $
	• Indis derivative • substitutes $x = 2$ in derivative		• $3x - 3$ • $3(2)^2 - 3 = 9$
	• ⁴ finds point on the line		• $3x^{2} = 3$ • $3(2)^{2} - 3 = 9$ • $y = (2)^{3} - 3(2) = 8 - 6 = 2; (2, 2)$
	• ⁵ substitutes in equation		$\bullet^5 y-2=9(x-2)$
10	ans: $3(x-1)^2 + 8$	(3marks)	
	\bullet^1 takes common factor		• 1 3(x ² - 2x) + 11
	\bullet^2 completes square in bracket		• ² $3[(x-1)^2-1]+11$
	• ³ simplifies		• ³ $3(x-1)^2 - 3 + 11 = 3(x-1)^2 + 8$
11(a)	ans: $k = 3$	(1 mark)	
	• ¹ substitutes and solves for k		• 1 $k = \log_5 125; k = 3$
(b)	ans: $a = 3$	(1 mark)	
	• ¹ substitutes and solves for a		• $9 = a^2; a = 3$
12	ans: $m = 6$	(4 marks)	
	\bullet^1 knows to take derivative		• $\frac{dy}{dx} = \dots$
	\bullet^2 finds derivative		$\bullet^2 = -6\sin 3x - 2\sin x \cos x$
	• ³ substitutes		\bullet^3 $6\sin(\frac{3\pi}{2}) - 2\sin\frac{\pi}{2}\cos\frac{\pi}{2}$