TEST D

1. (a) The line L_1 passes through the point (5, 2) and makes an angle of 135° with the positive direction of the *x*-axis.

- 2. Mr Smith, a Biology teacher, had a feeling that his locust colony was dying off. One day he counted the locusts and discovered that there were only 3600 left and that he was losing them at a rate of 15% each week! He decided that something had to be done. He bought a fresh supply of live locusts and started adding them to the colony at the rate of 240 each week. The new locusts were introduced at the **end** of each week.
 - (a) Set up a recurrence relation to illustrate Mr Smith's locust situation. (2)

Mr Smith decided that if the number of locusts in the colony fell below 1800 he would need to abandon the colony and start again.

- (b) Over the long term, would Mr Smith ever have to abandon his colony?
 You must show all relevant working and give a reason for your answer. (3)
- **3.** Part of the graph of y = f(x) is shown in the diagram.

Sketch the graph of y = f'(x) + 2, marking clearly any known points.

(4)

4. Two functions are defined on suitable domains as f(x) = 4x + 5 and $g(x) = x^2 + 3$.

(a) Show clearly that
$$h(x) = 16x^2 + 40x + 28$$
, where $h(x) = g(f(x))$. (2)

(b) Find the value(s) of x for which h(x) = 4.

5. (a) The curve in the diagram has its equation in the form $y = k x (x-4)^2$, where k is a constant.

The curve passes through the point (5,10).

Find the value of *k*.

- (b) Find the equation of the tangent to this curve at the point where x = 1.
- (c) Find the *x*-coordinate of R, the maximum turning point of the graph.

$$2\sin 2x^{\circ} + \sqrt{3} = 0$$
 for $0 < x \le 360$. (4)

7. Given that
$$f(x) = \cos 3x + \sin^2 x$$
, show that $f'(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}$. (4)

[END OF QUESTION PAPER]

(3)

SET E

	Give 1 mark for each •	Illustration(s) for awarding each mark	
1. (a) (b)	ans: $y + x = 7$ 3 marks•1knowing to find tan of angle•2substituting into $y - b = x(m - a)$ •3re-arranging to acceptable formans:(8, -1)4 marks•1knowing $m_1 \times m_2 = -1$ •2substituting & re-arranging•3knowing to use sim.eqs.•4solving to answer	• 1 tan $135^{\circ} = -1 = m$ • 2 $y - 2 = -1(x - 5)$ • 3 $y + x = 7$ (or equivalent) • 1 $m_{perp} = 1$ • 2 $y - x = -9$ • 3 evidence • 4 (8, -1)	
2. (a) (b)	Ans: $U_{n+1} = 0.85 U_n + 240$ 2 marks \bullet^1 using correct multiplier2 marks \bullet^2 adding 2403 marksAns:Yes3 marks \bullet^1 stating that limit exists \bullet^2 finding limit \bullet^3 valid conclusion with reason	• $1 0.85U_n$ • $2 +240$ • $1 -1<0.85<1$ • $2 240/0.15$ or equivalent1600 • $3 ves number of locusts between 1360$	
		and 1600 so less than 1800.	
3.	Ans: 4 marks 4 marks 4 marks 4 marks 4 marks 4 marks 4 marks 4 marks 4 marks (-1,2) (-1,2) (1,	 This is only one of a whole family of acceptable curves. Most pupils will probably have min. turning point at origin but not determinable from given info., however perfectly acceptable. evidence of different shaped graph parabolic shape moves roots two up (-1,2) and (1,2) marked 	

	Give 1 mark for each •			Illu	stration(s) for awarding each mark
4. (a) (b)	ans: 1 • ¹ • ² ans: -1	6x ² + 40x + 28 knowing correct order of sub simplifying or -1.5	2 marks ostitution 3 marks	• $g($ • e^{2} 16.	$f(x)) = g(4x+5) = (4x+5)^{2} + 3$ $x^{2} + 40x + 28$
	• ¹ • ² • ³	knowing to equate to 4 re-arranging and factorising solving to answer		• $^{-1}$ 16. • 2 8(2 • 3 x =	$x^{2} + 40x + 28 = 4$ 2x + 3)(x + 1) = 0 = -1 \cdot 5 or -1
5. (a)	Ans: • ¹ • ²	proof substituting (5,10) finding value of ' <i>k</i> '	2 marks	• ¹ • ²	$10 = k(5)(1)^2$ k = 2
(b)	Ans: ● ¹ ● ² ● ³ ● ⁴ ● ⁵	y = 6x + 12 preparing to differentiate carrying out differentiation knowing to sub. $x = 1$ to find knowing to find point on line substituting into $y - b = m(x + a)$ and arranging	5 marks	•1 •2 •3 •4 •5	$2x^{3} - 16x^{2} + 32x$ $6x^{2} - 32x + 32$ m = 6 (1, 18) y - 18 = 6(x - 1)
(c)	Ans:	$\frac{4}{3}$	3 marks	•1	$\frac{dy}{dt} = 0$
	• ² • ³	factorising solving and discarding $x = 4$	v	• ² • ³	dx^{-3} 2(3x-4)(x-4) = 0 $x = \frac{4}{3} \text{ or } A$
	•3	solving and discarding x = 4		• ³	$x = \frac{4}{3} \text{ or } A$

	Give 1 mark for each •	Illustration(s) for awarding each mark	
6.	Ans: $\{120^{\circ}, 150^{\circ}, 300^{\circ}, 330^{\circ}\}$ 4 marks • ¹ for making sin 2x the subject • ² for first two double angles • ³ for second two double angles • ⁴ for dividing by 2	• $\sin 2x = -\frac{\sqrt{3}}{2}$ • $2x = 240^{\circ}, 300^{\circ}$ • $2x = 600^{\circ}, 660^{\circ}$ • $x = 120^{\circ}, 150^{\circ}, 300^{\circ}, 330^{\circ}$	
7.	ans: proof 4 marks 1 first part of derivative 2 second part of derivative 3 knowing to substitute $\frac{\pi}{3}$ 4 evaluating to answer 4 evaluating to answer 4 4	• 1 -3sin 3x • 2 + 2sin x cos x [or sin 2x] • 3 -3sin π + sin $\frac{2\pi}{3}$ • 4 -3×0+ $\frac{\sqrt{3}}{2}$ Total 39 marks	