Relationships and Calculus Assessment Standard 1.1

- 1. Show that (x + 2) is a factor of $f(x) = x^3 2x^2 4x + 8$ and hence factorise f(x) fully. Hence solve the equation $x^3 2x^2 x 3 = 3x 11$.
- 2. Show that (x + 2) is a factor of $g(x) = x^3 + 4x^2 + x 6$ and hence factorise g(x) fully. Hence solve the equation $x^3 + 4x^2 + 2x + 1 = x + 7$.
- 3. Show that (x-1) is a factor of $f(x) = x^3 + 3x^2 4$ and hence factorise f(x) fully. Hence solve the equation $x^3 + 3x^2 + x 3 = x + 1$.
- 4. Show that (x + 3) is a factor of $f(x) = x^3 + x^2 5x + 3$ and hence factorise f(x) fully. Hence solve the equation $x^3 + x^2 + x 3 = 6x 6$.
- 5. For what values of k does the equation $x^2 2x + k = 0$ have

 (a) 2 real, distinct roots (b) equal roots (c) no real roots?
- 6. Show that the line y = x + k meets the parabola $y = x^2 3x$ where $x^2 4x k = 0$. Use the discriminant to find the value of k for which the line is a tangent to the parabola.
- 7. Show that the line y = 3x + k meets the parabola $y = x^2 + 4$ where $x^2 3x + (4 k) = 0$. Use the discriminant to find the value of k for which the line is a tangent to the parabola.
- 8. Calculate the range of values of k so that the graph of $y = 4x^2 kx + 25$ does not cut or touch the x-axis.

- 7. The tangent line y = 5x 3 meets the curve $y = x^3 + x^2$ at A(1, 2) and at another point B. Show that the tangent line and curve meet where $x^3 + x^2 5x + 3 = 0$ and hence find the coordinates of the point B.
- 10. The tangent line y = 3x 2 meets the curve $y = x^3$ at A(1, 1) and at another point B. Show that the tangent line and curve meet where $x^3 3x + 2 = 0$ and hence find the coordinates of the point B.

Relationships and Calculus Assessment Standard 1:1 Answers

1.
$$f(x) = (x + 2)(x - 2)(x - 2)$$
 Solution : $x = -2, 2, 2$

2.
$$g(x) = (x + 2)(x + 3)(x - 1)$$
 Solution : $x = -2, -3, 1$

3.
$$f(x) = (x + 2)(x + 2)(x - 1)$$
 Solution : $x = -2, -2, 1$

4.
$$f(x) = (x + 3)(x - 1)(x - 1)$$
 Solution : $x = -3, 1, 1$

5. (a)
$$k < 1$$
 (b) $k = 1$ (c) $k > 1$

6.
$$k = -4$$

7.
$$k = \frac{7}{4}$$

Relationships and Calculus Assessment Standard 1.4

1. Find
$$\int 2 + \frac{6}{x^3} dx$$
, where $x \neq 0$.

2. Find
$$\int \frac{1}{x^3} dx$$
, where $x \neq 0$.

3. Find
$$\int \frac{3}{x^4} + 1 \, dx$$
, where $x \neq 0$.

4. Find
$$\int \frac{12}{x^5} dx$$
, where $x \neq 0$.

5. (a) Find
$$\int \frac{\sqrt{3}}{2} \cos x \, dx$$
.

(b) Integrate 3 sinx with respect to x.

(c) Evaluate
$$\int_{4}^{6} (x-3)^{3} dx$$

6. (a) Find
$$\int \frac{1}{2} \cos x \, dx$$
.

(b) Integrate sin4x with respect to x.

(c) Evaluate
$$\int_2^4 (x-2)^3 dx$$

- 7. (a) Find $\int 2 \sin x \, dx$.
 - (b) Integrate $\frac{1}{2}$ cosx with respect to x.
 - (c) Evaluate $\int_{1}^{2} (x+3)^{4} dx$
- 8. (a) Find $\int -3\sin x \, dx$.
 - (b) Integrate cos 4x with respect to x.
 - (c) Evaluate $\int_{1}^{3} (2x+1)^{3} dx$

Relationships and Calculus Assessment Standard 1.4 Answers

- 1. $2x 3x^{-2} + c$
- 2. $-\frac{1}{2}x^{-2} + c$
- 3. $-x^{-3} + x + c$
- 4. $-3x^{-4} + c$
- 5. (a) $\frac{\sqrt{3}}{2} \sin x + c$ (b) $-3 \cos x + c$ (c) 20
- 6. (a) $\frac{1}{2} \sin x + c$ (b) $-\frac{1}{4} \cos 4x + c$ (c) 4
- 7. (a) $-2\cos x + c$ (b) $\frac{1}{2}\sin x + c$ (c) 420.2
- 8. (a) $3 \cos x + c$ (b) $\frac{1}{4} \sin 4x + c$ (c) 290

Relationships and Calculus Assessment Standard 1.2

- 1. Solve algebraically the equation $\sqrt{2} \sin 2x = 1$ for $0 \le x < \pi$.
- 2. Solve algebraically the equation $2\sin 2x = \sqrt{3}$ for $0 \le x < \pi$.
- 3. Solve algebraically the equation $\sqrt{2} \cos 2x = 1$ for $0 \le x < \pi$.
- 4. Solve algebraically the equation $\sqrt{3}$ tan 2x = 1 for $0 \le x < \pi$.
- 5.(a) Express $\sin 15^{\circ}\cos x^{\circ} + \cos 15^{\circ}\sin x^{\circ}$ in the form $\sin (A + B)^{\circ}$.
 - (b) Use your answer from part (a) to solve the equation

$$\sin 15^{\circ}\cos x^{\circ} + \cos 15^{\circ}\sin x^{\circ} = \frac{\sqrt{3}}{2}$$
 for 0 < x < 360.

- 6.(a) Express $\cos x^0 \cos 30^\circ \sin x^0 \sin 30^\circ$ in the form $\cos (A + B)^\circ$.
 - (b) Use your answer from part (a) to solve the equation

$$\cos x^{0}\cos 30^{0} - \sin x^{0}\sin 30^{0} = \frac{1}{4}$$
 for 0 < x < 360.

- 7.(a) Express $\sin x^{0}\cos 20^{0} \cos x^{0}\sin 20^{0}$ in the form $\sin (A B)^{0}$.
 - (b) Hence solve the equation $\sin x^0 \cos 20^0 \cos x^0 \sin 20^0 = \frac{4}{9}$ for 0 < x < 180.
- 8. Solve the equation $\sin x^0 \cos 35^0 + \cos x^0 \sin 35^0 = \frac{7}{11}$ for 0 < x < 180.

- 9. Solve the following equations for $0 \le x \le 360$:
 - (a) $\sin 2x^{0} \cos x^{0} = 0$
 - (b) $\sin 2x^{\circ} 3\sin x^{\circ} = 0$
 - (c) $\cos 2x^0 + \sin x^0 = 0$
 - (d) $\cos 2x^0 + \cos x^0 + 1 = 0$
 - (e) $\cos 2x^0 + 3\cos x^0 + 2 = 0$
 - (f) $\sin x^0 2 \cos 2x^0 = 1$
- 10. $\sin x + \sqrt{3} \cos x \cos be$ written as $2\cos(x \frac{\pi}{6})$. Solve $5\sin 2x + 5\sqrt{3} \cos 2x = 5$, where $0 < x < \pi$.
- 11. $\sqrt{3} \sin x^{\circ} \cos x^{\circ}$ can be written as $2 \sin(x 30)^{\circ}$. Solve $4 + 5 \cos 2x^{\circ} - 5\sqrt{3} \sin 2x^{\circ} = -1$, where $0 \le x^{\circ} \le 90$.
- 12. $\cos x \sqrt{3} \sin x$ can be written in the form $2 \cos(x + \frac{\pi}{3})$. Solve $\cos 2x - \sqrt{3} \sin 2x = 1$, $0 \le x \le \pi$

Relationships and Calculus Assessment Standard 1.2 Answers

$$1. \qquad \frac{\pi}{8}, \ \frac{3\pi}{8}$$

$$2. \qquad \frac{\pi}{6}, \ \frac{\pi}{3}$$

3.
$$\frac{\pi}{8}$$
, $\frac{7\pi}{8}$

4.
$$\frac{\pi}{12}$$
, $\frac{7\pi}{12}$

5. (a)
$$\sin(x + 15)^{\circ}$$
 (b) $x = 45^{\circ}$ or 105°

6. (a)
$$cos(x + 30)^{\circ}$$
 (b) $x = 45.5^{\circ}$ or 254.5°

7. (a)
$$\sin(x - 20)^{\circ}$$
 (b) $x = 46.4^{\circ}$ or 173.6°

9.(a)
$$\sin 2x - \cos x = 0$$

$$2 \sin x \cos x - \cos x = 0$$

$$\cos x (2 \sin x - 1) = 0$$

$$\cos x = 0$$
 or $2 \sin x - 1 = 0$

$$x^{o} = 30^{o}, 90^{o}, 150^{o}, 270^{o}$$

(b)
$$x^0 = 0^\circ$$
, 180° , 360°

(c)
$$x^0 = 90^\circ, 210^\circ, 330^\circ$$

(d)
$$x^0 = 90^\circ$$
, 120° , 240° , 270°

(e)
$$x^0 = 120^\circ, 180^\circ, 240^\circ$$

(f)
$$x^0 = 48.6^\circ, 131.4^\circ, 270^\circ$$

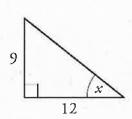
10.
$$x = \frac{\pi}{4}, \frac{11\pi}{12}$$

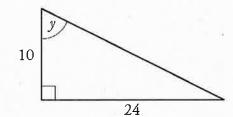
11.
$$x^0 = 30^\circ, 90^\circ$$

12.
$$x = 0, \frac{2\pi}{3}$$

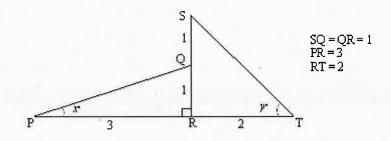
Expressions and Functions Assessment Standard 1.2

1. The diagram below shows two right-angled triangles.



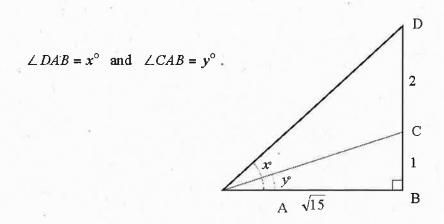


- (a) Write down the values of sinxo and cosyo.
- (b) By expanding $\cos(x+y)^{\circ}$ show that the exact value of $\cos(x+y)^{\circ}$ is $\frac{-16}{65}$.
- 2. Express 12 $\cos x^0 + 5\sin x^0$ in the form $k\cos(x a)^0$ where k > 0 and $0 \le a \le 360$.
- 3. The diagram below shows two right-angled triangles PQR and SRT.

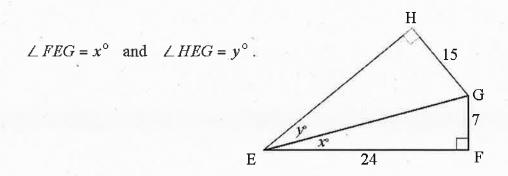


- (a) Write down the values of $cosx^o$ and $siny^o$.
- (b) By expanding $\sin(x+y)^0$ show that the exact value of $\sin(x+y)^0$ is $\frac{8}{\sqrt{80}}$.
- 4. Express $2\cos x^0 + 5\sin x^0$ in the form $k\cos(x a)^0$ where k > 0 and $0 \le a \le 360$.

5. The diagram below shows two right-angled triangles ABC and ABD.



- (a) Write down the values of $\cos x^0$ and $\sin y^0$.
- (b) By expanding $\cos(x-y)^0$ show that the exact value of $\cos(x-y)^0$ is $\frac{18}{4\sqrt{24}}$.
- 6. Express $4\cos x^0 + \sin x^0$ in the form $k\cos(x a)^0$ where k > 0 and $0 \le a < 360$.
- 7. The diagram below shows two right-angled triangles EFG and EHG.



- (a) Write down the values of $sinx^0$ and $cosy^0$.
- (b) By expanding $\cos(x+y)^0$ show that the exact value of $\cos(x+y)^0$ is $\frac{3}{5}$.
- 8. Express $7\sin x^0 + 4\cos x^0$ in the form $k\cos(x a)^0$ where k > 0 and $0 \le a \le 360$.

- 9. Show that $(\sin A + \cos A)^2 = 1 + \sin 2A$ and hence state the maximum value of $4(\sin A + \cos A)^2$.
- 10. Show that $\sin^3 x \cos x + \sin x \cos^3 x = \frac{1}{2} \sin 2x$ and hence state the minimum value of $8\sin^3 x \cos x + 8\sin x \cos^3 x$.
- 11. Show that $(\cos A + \sin A)(\cos A \sin A) = \cos 2A$ and hence state the maximum value of $5(\cos A + \sin A)(\cos A \sin A)$.

Expressions and Functions Assessment Standard 1.2 Answers

1.(a)
$$\sin x = \frac{9}{15} = \frac{3}{5}$$
, $\cos x = \frac{10}{26} = \frac{5}{13}$ (b) Proof

2.
$$k = 13$$
, $a^0 = 22.6^\circ$

3.(a)
$$\sin y = \frac{2}{\sqrt{8}}$$
, $\cos x = \frac{3}{\sqrt{10}}$ (b) Proof

4.
$$k = \sqrt{29}$$
, $a^0 = 68.2^\circ$

5.(a)
$$\cos x = \frac{\sqrt{15}}{\sqrt{24}}$$
, $\sin y = \frac{1}{4}$ (b) Proof

6.
$$k = \sqrt{17}$$
, $a^0 = 14.0^\circ$

7.(a)
$$\sin x = \frac{7}{25}$$
, $\cos y = \frac{20}{25}$ (b) Proof

8.
$$k = \sqrt{65}$$
, $a^0 = 60.3^\circ$

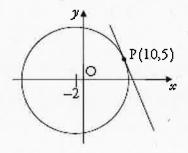
9. Max value of
$$4(\sin A + \cos A)^2 = \max \text{ value of } 4(1 + \sin 2A) = 4(1 + 1) = 8$$
.

10. Min value of
$$8\sin^3 x \cos x + 8\sin x \cos^3 x = \min \text{ value of } 8(\frac{1}{2}\sin 2x) = 8 \times (-\frac{1}{2}) = -4$$
.

11. Max value of
$$5(\cos A + \sin A)(\cos A - \sin A) = \max \text{ value of } 5\cos 2A = 5$$
.

Applications Assessment Standard 1.2

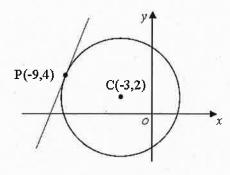
- 1. (a) A circle has radius 7 units and centre (2, -3). Write down the equation of the circle.
 - (b) A circle has equation $x^2 + y^2 10x + 6y 3 = 0$. Write down its radius and the coordinates of its centre.
- 2. Show that the straight line y = -2x 3 is a tangent to the circle with equation $x^2 + y^2 + 6x + 4y + 8 = 0$.
- 3. The point P(10, 5) lies on the circle with centre (-2, 0), as shown in the diagram below.



Find the equation of the tangent to the circle at P.

- 4. (a) A circle has radius 6 units and centre C(4, -1). Write down the equation of the circle.
 - (b) A circle has equation $x^2 + y^2 4x + 2y 4 = 0$. Write down its radius and the coordinates of its centre.
- 5. Determine if the line y = 5 2x is a tangent to the circle with equation $x^2 + y^2 + 6x 2y 10 = 0$.

6. The point P(-9, 4) lies on the circle with centre C(-3, 2), as shown in the diagram below.



Find the equation of the tangent to the circle at P.

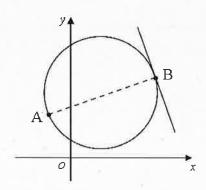
7. (a) A circle has radius 10 units and centre C(5, -2). Write down the equation of the circle.

(b) A circle has equation $x^2 + y^2 - 2x + 10y + 1 = 0$. Write down its radius and the coordinates of its centre.

8. Determine if the line y = x - 10 is a tangent to the circle with equation $x^2 + y^2 - 6x + 6y + 10 = 0$.

9. A circle has AB as a diameter, as shown in the diagram. A and B have coordinates (-2, 5) and (10, 8) respectively.

Find the equation of the tangent at B.



- 10. (a) A circle has a radius of 1 unit and centre C(-2, 6). Write down the equation of the circle.
 - (b) A circle has equation $x^2 + y^2 6x + 5 = 0$. Write down its radius and the coordinates of its centre.
- 11. Determine if the line y = 17 4x is a tangent to the circle with equation $x^2 + y^2 + 8x + 2y 51 = 0$.
- 12. A circle has as its centre the point C(5, 1). The point P(9, 3) lies on its circumference.

Find the equation of the tangent at P.

- Determine whether circle A: $(x 2)^2 + (y 1)^2 = 15$ intersects with circle B: $(x + 4)^2 + (y 3)^2 = 27$. Justify your answer.
- Determine whether circle A: $(x 2)^2 + (y 3)^2 = 9$ intersects with circle

 B: $(x 1)^2 + (y + 1)^2 = 16$. State whether they intersect at zero, one or two points and justify your answer.
- 15. Determine whether circle A: $(x-3)^2 + (y-4)^2 = 25$ intersects with circle

 B: $(x-3)^2 + (y-14)^2 = 25$. State whether they intersect at zero, one or two points and justify your answer. What does this mean geometrically?
- 16. Consider circles A: $(x-18)^2 + (y-20)^2 = 100$ and B: $(x-15)^2 + (y-16)^2 = 25$. Explain why these circles intersect at one common point.

Applications Assessment Standard 1.2 Answers

1. (a)
$$(x-2)^2 + (y+3)^2 = 49$$

2. Either discriminant = 0 or show that there is only one root, therefore line is a tangent.

3.
$$y-5=\frac{-12}{5}(x-10)$$

4. (a)
$$(x-4)^2 + (y+1)^2 = 36$$

(a)
$$(x-4)^2 + (y+1)^2 = 36$$
 (b) Centre (2, -1). Radius = 3

5. Either discriminant = 0 or show that there is only one root, therefore line is a tangent.

6.
$$y-4=3(x+9)$$

7. (a)
$$(x-5)^2 + (y+2)^2 = 100$$

Either discriminant = 0 or show that there is only one root, therefore line is a 8. tangent.

9.
$$y - 8 = -4 (x - 10)$$

10. (a)
$$(x + 2)^2 + (y - 6)^2 = 1$$

Either discriminant = 0 or show that there is only one root, therefore line is a 11. tangent.

12.
$$y - 3 = -2(x - 9)$$

13. Circle A has centre (2, 1) and radius $\sqrt{15} = 3.9$

Circle B has centre (-4, 3) and radius $\sqrt{27} = 5.2$

The distance between the centres = $\sqrt{40}$ = 6.3 < sum of the radii, hence the circles intersect at two distinct points.

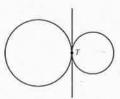
14. Circle A has centre (2, 3) and radius = 3

Circle B has centre (1, -1) and radius = 4

The distance between the centres = $\sqrt{17}$ = 4.1 < sum of the radii, hence the circles intersect at two distinct points.

15. Circle A has centre (3, 4) and radius = 5

Circle B has centre (3, 14) and radius = 5



The distance between the centres = $10 \equiv \text{sum of the radii}$, hence the circles intersect at one distinct point on a common tangent.

16. Circle A has centre (18, 20) and radius = 10

Circle B has centre (15, 16) and radius = 5

The distance between the centres = 5 < sum of the radii.

Hence the circles intersect at one distinct point on a common tangent.