

Recurrence Relations - Limits

- Given the recurrence relation $u_{n+1} = 0.4u_n + 12$, $u_0 = 22$
 - State why the sequence generated by it has a limit.
 - Calculate the value of this limit.
- A sequence is defined by the recurrence relation $u_{n+1} = 0.8u_n + 4$.
 - Explain why this sequence has a limit as n tends to infinity.
 - Find the exact value of this limit.
- Two sequences are defined by these recurrence relations

$$u_{n+1} = 2u_n - 0.2 \text{ with } u_0 = 6 \quad v_{n+1} = 0.25v_n + 6 \text{ with } v_0 = 10$$

- Explain why only one of these sequences approaches a limit as $n \rightarrow \infty$
- Find algebraically the exact value of this limit.

- A sequence is defined by the recurrence relation $u_n = 0.7u_{n-1} + 6$, $u_1 = 2$
 - Calculate the value of u_2 and u_3
 - What is the smallest value of n for which $u_n > 15$
 - Find the limit of this sequence as $n \rightarrow \infty$
- A sequence is defined by the recurrence relation $V_n = 0.6V_{n-1} + 10$, $V_1 = 20$
 - Calculate the value of V_2
 - What is the smallest value of n for which $V_n > 24$
 - Find the limit of this sequence as $n \rightarrow \infty$

- A recurrence relation is defined as

$$u_n = 0.25u_{n-1} - 8, u_1 = 10$$

- Find the values of u_2 and u_3
- Explain why this sequence has a limit as n tends to infinity and calculate the value of this limit.

- A recurrence relation is defined as

$$u_{n+1} = 0.8u_n + 4, u_2 = 32.8$$

- Find the values of u_1 and u_0
- Explain why this sequence has a limit as n tends to infinity and calculate the value of this limit.

- Two sequences are defined by the recurrence relations

$$u_{n+1} = 0.4u_n + p \quad v_{n+1} = 0.8v_n + q$$

If both sequences have the same limit, express p in terms of q .